2,880 research outputs found
Against the Odds: Psychomotor Development of Children Under 2 years in a Sudanese Orphanage.
Providing abandoned children the necessary medical and psychological care as possible after their institutionalization may minimize developmental delays. We describe psychomotor development in infants admitted to an orphanage in Khartoum, Sudan, assessed at admission and over an 18-month follow-up. Psychological state and psychomotor quotients were determined using a simplified Neonatal Behavior Assessment Scale (NBAS), the Brunet-Lezine and Alarm distress baby (ADBB) scale. From May-September 2005, 151 children were evaluated 2, 4, 9, 12 and 18 months after inclusion. At admission, ∼15% of children ≤1 month had a regulation impairment according to the NBAS, and 33.8% presented a distress state (ADBB score >5). More than 85% (129/151) recovered normal psychomotor development. The results of the program reinforce the importance of early detection of psychological disorders followed by rapid implementation of psychological case management to improve the development of young children in similar institutions and circumstances
First Measurement of Monoenergetic Muon Neutrino Charged Current Interactions
We report the first measurement of monoenergetic muon neutrino charged
current interactions. MiniBooNE has isolated 236 MeV muon neutrino events
originating from charged kaon decay at rest ()
at the NuMI beamline absorber. These signal -carbon events are
distinguished from primarily pion decay in flight and
backgrounds produced at the target station and decay pipe
using their arrival time and reconstructed muon energy. The significance of the
signal observation is at the 3.9 level. The muon kinetic energy,
neutrino-nucleus energy transfer (), and total cross
section for these events is extracted. This result is the first known-energy,
weak-interaction-only probe of the nucleus to yield a measurement of
using neutrinos, a quantity thus far only accessible through electron
scattering.Comment: 6 pages, 4 figure
Flavor Singlet Axial Vector Coupling of the Proton with Dynamical Wilson Fermions
We present the results of a full QCD lattice calculation of the flavor
singlet axial vector coupling of the proton. The simulation has been
carried out on a lattice at with dynamical
Wilson fermions. It turns out that the statistical quality of the connected
contribution to is excellent, whereas the disconnected part is
accessible but suffers from large statistical fluctuations. Using a 1st order
tadpole improved renormalization constant , we estimate .Comment: 13 pages, 5 eps figures, minor changes to text and citation
Measurement of the neutrino component of an anti-neutrino beam observed by a non-magnetized detector
Two independent methods are employed to measure the neutrino flux of the
anti-neutrino-mode beam observed by the MiniBooNE detector. The first method
compares data to simulated event rates in a high purity \numu induced
charged-current single \pip (CC1\pip) sample while the second exploits the
difference between the angular distributions of muons created in \numu and
\numub charged-current quasi-elastic (CCQE) interactions. The results from
both analyses indicate the prediction of the neutrino flux component of the
pre-dominately anti-neutrino beam is over-estimated - the CC1\pip analysis
indicates the predicted \numu flux should be scaled by , while
the CCQE angular fit yields . The energy spectrum of the flux
prediction is checked by repeating the analyses in bins of reconstructed
neutrino energy, and the results show that the spectral shape is well modeled.
These analyses are a demonstration of techniques for measuring the neutrino
contamination of anti-neutrino beams observed by future non-magnetized
detectors.Comment: 15 pages, 7 figures, published in Physical Review D, latest version
reflects changes from referee comment
A phenomenological approach to the simulation of metabolism and proliferation dynamics of large tumour cell populations
A major goal of modern computational biology is to simulate the collective
behaviour of large cell populations starting from the intricate web of
molecular interactions occurring at the microscopic level. In this paper we
describe a simplified model of cell metabolism, growth and proliferation,
suitable for inclusion in a multicell simulator, now under development
(Chignola R and Milotti E 2004 Physica A 338 261-6). Nutrients regulate the
proliferation dynamics of tumor cells which adapt their behaviour to respond to
changes in the biochemical composition of the environment. This modeling of
nutrient metabolism and cell cycle at a mesoscopic scale level leads to a
continuous flow of information between the two disparate spatiotemporal scales
of molecular and cellular dynamics that can be simulated with modern computers
and tested experimentally.Comment: 58 pages, 7 figures, 3 tables, pdf onl
Ab Initio Study of Hybrid b-bar-gb Mesons
Hybrid b-bar-gb molecules in which the heavy b-bar-b pair is bound together
by the excited gluon field g are studied using the Born-Oppenheimer expansion
and numerical simulations. The consistency of results from the two approaches
reveals a simple and compelling physical picture for heavy hybrid states.Comment: 4 pages, 3 figures, uses REVTeX and epsf, final published versio
- …
