17 research outputs found
The KCNQ4-mediated M-current regulates the circadian rhythm in mesopontine cholinergic neurons
AbstractThe M-current is a voltage gated potassium current inhibited by muscarinic activation and affected by several other G-protein coupled receptors. Its channels are formed by KCNQ subunits, from which KCNQ4 is restricted to certain brainstem structures. We sought evidence for the function of the M-current in the pedunculopontine nucleus (PPN) and the contribution of KCNQ4 subunits to the M-current and aimed to find its functional significance in the PPN. We found that cholinergic inputs of the PPN can effectively inhibit M-current. This current is capable of synchronizing neighboring neurons and inhibition of the M-current decreases neuronal synchronization. We showed that only a subpopulation of cholinergic neurons has KCNQ4-dependent M-current. The KCNQ4 subunit expression potentially regulates the presence of other KCNQ subunits. Deletion of KCNQ4 leads to alterations in adaptation of activity to light-darkness cycles, thus representing the potential role of KCNQ4 in regulation of sleep-wakefulness cycles. The presence of this protein restricted to certain brainstem nuclei raises the possibility that it might be a potential target for selective therapeutic interventions affecting the reticular activating system.</jats:p
Alteration of Mesopontine Cholinergic Function by the Lack of KCNQ4 Subunit
The pedunculopontine nucleus (PPN), a structure known as a cholinergic member of the reticular activating system (RAS), is source and target of cholinergic neuromodulation and contributes to the regulation of the sleep–wakefulness cycle. The M-current is a voltage-gated potassium current modulated mainly by cholinergic signaling. KCNQ subunits ensemble into ion channels responsible for the M-current. In the central nervous system, KCNQ4 expression is restricted to certain brainstem structures such as the RAS nuclei. Here, we investigated the presence and functional significance of KCNQ4 in the PPN by behavioral studies and the gene and protein expressions and slice electrophysiology using a mouse model lacking KCNQ4 expression. We found that this mouse has alterations in the adaptation to changes in light–darkness cycles, representing the potential role of KCNQ4 in the regulation of the sleep–wakefulness cycle. As cholinergic neurons from the PPN participate in the regulation of this cycle, we investigated whether the cholinergic PPN might also possess functional KCNQ4 subunits. Although the M-current is an electrophysiological hallmark of cholinergic neurons, only a subpopulation of them had KCNQ4-dependent M-current. Interestingly, the absence of the KCNQ4 subunit altered the expression patterns of the other KCNQ subunits in the PPN. We also determined that, in wild-type animals, the cholinergic inputs of the PPN modulated the M-current, and these in turn can modulate the level of synchronization between neighboring PPN neurons. Taken together, the KCNQ4 subunit is present in a subpopulation of PPN cholinergic neurons, and it may contribute to the regulation of the sleep–wakefulness cycle.</jats:p
Vestibular role of KCNQ4 and KCNQ5 K+ channels revealed by mouse models
The function of sensory hair cells of the cochlea and vestibular organs depends on an influx of K+ through apical mechanosensitive ion channels and its subsequent removal over their basolateral membrane. The KCNQ4 (Kv7.4) K+ channel, which is mutated in DFNA2 human hearing loss, is expressed in the basal membrane of cochlear outer hair cells where it may mediate K+ efflux. Like the related K+ channel KCNQ5 (Kv7.5), KCNQ4 is also found at calyx terminals ensheathing type I vestibular hair cells where it may be localized pre- or postsynaptically. Making use of Kcnq4-/- mice lacking KCNQ4, as well as Kcnq4dn/dn and Kcnq5dn/dn mice expressing dominant negative channel mutants, we now show unambiguously that in adult mice both channels reside in postsynaptic calyx-forming neurons, but cannot be detected in the innervated hair cells. Accordingly, whole cell currents of vestibular hair cells did not differ between genotypes. Neither Kcnq4-/-, Kcnq5 dn/dn nor Kcnq4-/-/ Kcnq5dn/dn double mutant mice displayed circling behavior found with severe vestibular impairment. However, a milder form of vestibular dysfunction was apparent from altered vestibulo- ocular reflexes in Kcnq4-/-/Kcnq5dn/dn and Kcnq4-/- mice. The larger impact of KCNQ4 may result from its preferential expression in central zon
The KCNQ5 potassium channel mediates a component of the afterhyperpolarization current in mouse hippocampus
Mutations in KCNQ2 and KCNQ3 voltage-gated potassium channels lead to neonatal epilepsy as a consequence of their key role in regulating neuronal excitability. Previous studies in the brain have focused primarily on these KCNQ family members, which contribute to M-currents and afterhyperpolarization conductances in multiple brain areas. In contrast, the function of KCNQ5 (Kv7.5), which also displays widespread expression in the brain, is entirely unknown. Here, we developed mice that carry a dominant negative mutation in the KCNQ5 pore to probe whether it has a similar function as other KCNQ channels. This mutation renders KCNQ5dn-containing homomeric and heteromeric channels nonfunctional. We find that Kcnq5dn/dn mice are viable and have normal brain morphology. Furthermore, expression and neuronal localization of KCNQ2 and KCNQ3 subunits are unchanged. However, in the CA3 area of hippocampus, a region that highly expresses KCNQ5 channels, the medium and slow afterhyperpolarization currents are significantly reduced. In contrast, neither current is affected in the CA1 area of the hippocampus, a region with low KCNQ5 expression. Our results demonstrate that KCNQ5 channels contribute to the afterhyperpolarization currents in hippocampus in a cell type-specific manner
The intrinsic energy of the gating isomerization of a neuromuscular acetylcholine receptor channel
Coupling of agonist binding to channel gating in an ACh-binding protein linked to an ion channel
Neurotransmitter receptors from the Cys-loop superfamily couple the binding of agonist to the opening of an intrinsic ion pore in the final step in rapid synaptic transmission. Although atomic resolution structural data have recently emerged for individual binding and pore domains how they are linked into a functional unit remains unknown. Here we identify structural requirements for functionally coupling the two domains by combining acetylcholine (ACh)-binding protein, whose structure was determined at atomic resolution, with the pore domain from the serotonin type-3A (5-HT3A) receptor. Only when amino-acid sequences of three loops in ACh-binding protein are changed to their 5-HT3A counterparts does ACh bind with low affinity characteristic of activatable receptors, and trigger opening of the ion pore. Thus functional coupling requires structural compatibility at the interface of the binding and pore domains. Structural modelling reveals a network of interacting loops between binding and pore domains that mediates this allosteric coupling process.Fil: Bouzat, Cecilia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Bioquímicas de Bahía Blanca. Universidad Nacional del Sur. Instituto de Investigaciones Bioquímicas de Bahía Blanca; ArgentinaFil: Gumilar, Fernanda Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Bioquímicas de Bahía Blanca. Universidad Nacional del Sur. Instituto de Investigaciones Bioquímicas de Bahía Blanca; ArgentinaFil: Spitzmaul, Guillermo Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Bioquímicas de Bahía Blanca. Universidad Nacional del Sur. Instituto de Investigaciones Bioquímicas de Bahía Blanca; ArgentinaFil: Wang, Hai Long. Mayo Clinic College of Medicine; Estados UnidosFil: Rayes, Diego Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Bioquímicas de Bahía Blanca. Universidad Nacional del Sur. Instituto de Investigaciones Bioquímicas de Bahía Blanca; ArgentinaFil: Hansen, Scott B.. University of California at San Diego; Estados UnidosFil: Taylor, Palmer. University of California at San Diego; Estados UnidosFil: Sine, Steven M.. Mayo Clinic College of Medicine; Estados Unido
