574 research outputs found
KubeNow: A Cloud Agnostic Platform for Microservice-Oriented Applications
KubeNow is a platform for rapid and continuous deployment of microservice-based applications over cloud infrastructure. Within the field of software engineering, the microservice-based architecture is a methodology in which complex applications are divided into smaller, more narrow services. These services are independently deployable and compatible with each other like building blocks. These blocks can be combined in multiple ways, according to specific use cases. Microservices are designed around a few concepts: they offer a minimal and complete set of features, they are portable and platform independent, they are accessible through language agnostic APIs and they are encouraged to use standard data formats. These characteristics promote separation of concerns, isolation and interoperability, while coupling nicely with test-driven development. Among many others, some well-known companies that build their software around microservices are: Google, Amazon, PayPal Holdings Inc. and Netflix [11]
Applications of the InChI in cheminformatics with the CDK and Bioclipse.
RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are.BACKGROUND: The InChI algorithms are written in C++ and not available as Java library. Integration into software written in Java therefore requires a bridge between C and Java libraries, provided by the Java Native Interface (JNI) technology. RESULTS: We here describe how the InChI library is used in the Bioclipse workbench and the Chemistry Development Kit (CDK) cheminformatics library. To make this possible, a JNI bridge to the InChI library was developed, JNI-InChI, allowing Java software to access the InChI algorithms. By using this bridge, the CDK project packages the InChI binaries in a module and offers easy access from Java using the CDK API. The Bioclipse project packages and offers InChI as a dynamic OSGi bundle that can easily be used by any OSGi-compliant software, in addition to the regular Java Archive and Maven bundles. Bioclipse itself uses the InChI as a key component and calculates it on the fly when visualizing and editing chemical structures. We demonstrate the utility of InChI with various applications in CDK and Bioclipse, such as decision support for chemical liability assessment, tautomer generation, and for knowledge aggregation using a linked data approach. CONCLUSIONS: These results show that the InChI library can be used in a variety of Java library dependency solutions, making the functionality easily accessible by Java software, such as in the CDK. The applications show various ways the InChI has been used in Bioclipse, to enrich its functionality
On-Demand Virtual Research Environments using Microservices
The computational demands for scientific applications are continuously
increasing. The emergence of cloud computing has enabled on-demand resource
allocation. However, relying solely on infrastructure as a service does not
achieve the degree of flexibility required by the scientific community. Here we
present a microservice-oriented methodology, where scientific applications run
in a distributed orchestration platform as software containers, referred to as
on-demand, virtual research environments. The methodology is vendor agnostic
and we provide an open source implementation that supports the major cloud
providers, offering scalable management of scientific pipelines. We demonstrate
applicability and scalability of our methodology in life science applications,
but the methodology is general and can be applied to other scientific domains
Use of historic metabolic biotransformation data as a means of anticipating metabolic sites using MetaPrint2D and Bioclipse.
BACKGROUND: Predicting metabolic sites is important in the drug discovery process to aid in rapid compound optimisation. No interactive tool exists and most of the useful tools are quite expensive. RESULTS: Here a fast and reliable method to analyse ligands and visualise potential metabolic sites is presented which is based on annotated metabolic data, described by circular fingerprints. The method is available via the graphical workbench Bioclipse, which is equipped with advanced features in cheminformatics. CONCLUSIONS: Due to the speed of predictions (less than 50 ms per molecule), scientists can get real time decision support when editing chemical structures. Bioclipse is a rich client, which means that all calculations are performed on the local computer and do not require network connection. Bioclipse and MetaPrint2D are free for all users, released under open source licenses, and available from http://www.bioclipse.net.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
Harmonising and linking biomedical and clinical data across disparate data archives to enable integrative cross-biobank research
Ontology of core data mining entities
In this article, we present OntoDM-core, an ontology of core data mining
entities. OntoDM-core defines themost essential datamining entities in a three-layered
ontological structure comprising of a specification, an implementation and an application
layer. It provides a representational framework for the description of mining
structured data, and in addition provides taxonomies of datasets, data mining tasks,
generalizations, data mining algorithms and constraints, based on the type of data.
OntoDM-core is designed to support a wide range of applications/use cases, such as
semantic annotation of data mining algorithms, datasets and results; annotation of
QSAR studies in the context of drug discovery investigations; and disambiguation of
terms in text mining. The ontology has been thoroughly assessed following the practices
in ontology engineering, is fully interoperable with many domain resources and
is easy to extend
Using Predicted Bioactivity Profiles to Improve Predictive Modeling
Predictive modeling is a cornerstone in early drug development. Using information for multiple domains or across prediction tasks has the potential to improve the performance of predictive modeling. However, aggregating data often leads to incomplete data matrices that might be limiting for modeling. In line with previous studies, we show that by generating predicted bioactivity profiles, and using these as additional features, prediction accuracy of biological endpoints can be improved. Using conformal prediction, a type of confidence predictor, we present a robust framework for the calculation of these profiles and the evaluation of their impact. We report on the outcomes from several approaches to generate the predicted profiles on 16 datasets in cytotoxicity and bioactivity and show that efficiency is improved the most when including the p-values from conformal prediction as bioactivity profiles
Synergy conformal prediction applied to large-scale bioactivity datasets and in federated learning
Confidence predictors can deliver predictions with the associated confidence required for decision making and can play an important role in drug discovery and toxicity predictions. In this work we investigate a recently introduced version of conformal prediction, synergy conformal prediction, focusing on the predictive performance when applied to bioactivity data. We compare the performance to other variants of conformal predictors for multiple partitioned datasets and demonstrate the utility of synergy conformal predictors for federated learning where data cannot be pooled in one location. Our results show that synergy conformal predictors based on training data randomly sampled with replacement can compete with other conformal setups, while using completely separate training sets often results in worse performance. However, in a federated setup where no method has access to all the data, synergy conformal prediction is shown to give promising results. Based on our study, we conclude that synergy conformal predictors are a valuable addition to the conformal prediction toolbox
- …
