174 research outputs found

    Topology and Dark Energy: Testing Gravity in Voids

    Full text link
    Modified gravity has garnered interest as a backstop against dark matter and dark energy (DE). As one possible modification, the graviton can become massive, which introduces a new scalar field - here with a Galileon-type symmetry. The field can lead to a nontrivial equation of state (EOS) of DE which is density-and-scale-dependent. Tension between Type Ia supernovae and Planck could be reduced. In voids the scalar field dramatically alters the EOS of DE, induces a soon-observable gravitational slip between the two metric potentials, and develops a topological defect (domain wall) due to a nontrivial vacuum structure for the field.Comment: Revised version, added detail, conclusions unchanged, matches PRL published version in content. 4 pages, 2 figure

    Dark matter and the first stars: a new phase of stellar evolution

    Full text link
    A mechanism is identified whereby dark matter (DM) in protostellar halos dramatically alters the current theoretical framework for the formation of the first stars. Heat from neutralino DM annihilation is shown to overwhelm any cooling mechanism, consequently impeding the star formation process and possibly leading to a new stellar phase. A "dark star'' may result: a giant (1\gtrsim 1 AU) hydrogen-helium star powered by DM annihilation instead of nuclear fusion. Observational consequences are discussed.Comment: 5 pages, 2 figures; replaced with accepted versio

    The Effect of Dark Matter on the First Stars: A New Phase of Stellar Evolution

    Full text link
    Dark matter (DM) in protostellar halos can dramatically alter the current theoretical framework for the formation of the first stars. Heat from supersymmetric DM annihilation can overwhelm any cooling mechanism, consequently impeding the star formation process and possibly leading to a new stellar phase. The first stars to form in the universe may be ``dark stars''; i.e., giant (larger than 1 AU) hydrogen-helium stars powered by DM annihilation instead of nuclear fusion. Possibilities for detecting dark stars are discussed.Comment: 3 pages, 2 figures, Proceedings for First Stars 2007 Conference in Santa Fe, NM, July 200

    Chain Inflation in the Landscape: "Bubble Bubble Toil and Trouble"

    Full text link
    In the model of Chain Inflation, a sequential chain of coupled scalar fields drives inflation. We consider a multidimensional potential with a large number of bowls, or local minima, separated by energy barriers: inflation takes place as the system tunnels from the highest energy bowl to another bowl of lower energy, and so on until it reaches the zero energy ground state. Such a scenario can be motivated by the many vacua in the stringy landscape, and our model can apply to other multidimensional potentials. The ''graceful exit'' problem of Old Inflation is resolved since reheating is easily achieved at each stage. Coupling between the fields is crucial to the scenario. The model is quite generic and succeeds for natural couplings and parameters. Chain inflation succeeds for a wide variety of energy scales -- for potentials ranging from 10MeV scale inflation to 101610^{16} GeV scale inflation.Comment: 31 pages, 3 figures, one reference adde
    corecore