1,583 research outputs found

    Discovery of strongly blue shifted mid-infrared [NeIII] and [NeV] emission in ULIRGs

    Full text link
    We report the discovery of blue shifted (delta(V) > 200 km/s) mid-infrared [NeIII] and/or [NeV] emission in 25 out of 82 ULIRGs (30% of our sample). The incidence of blue shifted [NeV] emission is even higher (59%) among the sources with a [NeV] detection -- the tell-tale signature of an active galactic nucleus (AGN). Sixteen ULIRGs in our sample, eleven of which are optically classified as AGN, have [NeIII] blue shifts above 200 km/s. A comparison of the line profiles of their 12.81um [NeII], 15.56um [NeIII] and 14.32um [NeV] lines reveals the ionization of the blue shifted gas to increase with blue shift, implying decelerating outflows in a stratified medium, photo-ionized by the AGN. The strong correlation of the line width of the [NeIII] line with the radio luminosity indicates that interaction of expanding radio jets with the dense ISM surrounding the AGN may explain the observed neon line kinematics for the strongest radio sources in this sample.Comment: Accepted for publication by ApJ Letters. 15 pages, 4 figure

    Detections of water ice, hydrocarbons, and 3.3um PAH in z~2 ULIRGs

    Get PDF
    We present the first detections of the 3um water ice and 3.4um amorphous hydrocarbon (HAC) absorption features in z~2 ULIRGs. These are based on deep rest-frame 2-8um Spitzer IRS spectra of 11 sources selected for their appreciable silicate absorption. The HAC-to-silicate ratio for our z~2 sources is typically higher by a factor of 2-5 than that observed in the Milky Way. This HAC `excess' suggests compact nuclei with steep temperature gradients as opposed to predominantly host obscuration. Beside the above molecular absorption features, we detect the 3.3um PAH emission feature in one of our sources with three more individual spectra showing evidence for it. Stacking analysis suggests that water ice, hydrocarbons, and PAH are likely present in the bulk of this sample even when not individually detected. The most unexpected result of our study is the lack of clear detections of the 4.67um CO gas absorption feature. Only three of the sources show tentative signs of this feature and at significantly lower levels than has been observed in local ULIRGs. Overall, we find that the closest local analogs to our sources, in terms of 3-4um color, HAC-to-silicate and ice-to-silicate ratios, as well as low PAH equivalent widths are sources dominated by deeply obscured nuclei. Such sources form only a small fraction of ULIRGs locally and are commonly believed to be dominated by buried AGN. Our sample suggests that, in absolute number, such buried AGN are at least an order of magnitude more common at z~2 than today. The presence of PAH suggests that significant levels of star-formation are present even if the obscured AGN typically dominate the power budget.Comment: 39 pages, 14 figures, accepted for publication in Ap

    Mid-infrared spectral evidence for a luminous dust enshrouded source in Arp220

    Full text link
    We have re-analyzed the 6-12 micron ISO spectrum of the ultra-luminous infrared galaxy Arp220 with the conclusion that it is not consistent with that of a scaled up version of a typical starburst. Instead, both template fitting with spectra of the galaxies NGC4418 and M83 and with dust models suggest that it is best represented by combinations of a typical starburst component, exhibiting PAH emission features, and a heavily absorbed dust continuum which contributes ~40% of the 6-12 micron flux and likely dominates the luminosity. Of particular significance relative to previous studies of Arp220 is the fact that the emission feature at 7.7 micron comprises both PAH emission and a broader component resulting from ice and silicate absorption against a heavily absorbed continuum. Extinction to the PAH emitting source, however, appears to be relatively low. We tentatively associate the PAH emitting and heavily dust/ice absorbed components with the diffuse emission region and the two compact nuclei respectively identified by Soifer et al. (2002) in their higher spatial resolution 10 micron study. Both the similarity of the absorbed continuum with that of the embedded Galactic protostars and results of the dust models imply that the embedded source(s) in Arp220 could be powered by, albeit extremely dense, starburst activity. Due to the high extinction, it is not possible with the available data to exclude that AGN(s) also contribute some or all of the observed luminosity. In this case, however, the upper limit measured for its hard X-ray emission would require Arp220 to be the most highly obscured AGN known.Comment: 11 pages, 9 figures. Accepted for publication in A&A. Also available at http://www.astro.rug.nl/~spoon/publications.htm

    Vibrationally excited HC3N in NGC 4418

    Get PDF
    We investigate the molecular gas properties of the deeply obscured luminous infrared galaxy NGC 4418. We address the excitation of the complex molecule HC3N to determine whether its unusually luminous emission is related to the nature of the buried nuclear source. We use IRAM 30m and JCMT observations of rotational and vibrational lines of HC3N to model the excitation of the molecule by means of rotational diagrams. We report the first confirmed extragalactic detection of vibrational lines of HC3N. We detect 6 different rotational transitions ranging from J=10-9 to J=30-29 in the ground vibrational state and obtain a tentative detection of the J=38-37 line. We also detect 7 rotational transitions of the vibrationally excited states v6 and v7, with angular momenta ranging from J=10-9 to 28-27. The energies of the upper states of the observed transitions range from 20 to 850 K. In the optically thin regime, we find that the rotational transitions of the vibrational ground state can be fitted for two temperatures, 30 K and 260 K, while the vibrationally excited levels can be fitted for a rotational temperature of 90 K and a vibrational temperature of 500 K. In the inner 300 pc of NGC 4418, we estimate a high HC3N abundance, of the order of 10^-7. The excitation of the HC3N molecule responds strongly to the intense radiation field and the presence of warm, dense gas and dust at the center of NGC 4418. The intense HC3N line emission is a result of both high abundances and excitation. The properties of the HC3N emitting gas are similar to those found for hot cores in Sgr B2, which implies that the nucleus (< 300 pc) of NGC 4418 is reminiscent of a hot core. The potential presence of a compact, hot component (T=500 K) is also discussed

    CO-Dark Star Formation and Black Hole Activity in 3C 368 at z = 1.131: Coeval Growth of Stellar and Supermassive Black Hole Masses

    Get PDF
    We present the detection of four far-infrared fine-structure oxygen lines, as well as strong upper limits for the CO(2-1) and [N II] 205 um lines, in 3C 368, a well-studied radio-loud galaxy at z = 1.131. These new oxygen lines, taken in conjunction with previously observed neon and carbon fine-structure lines, suggest a powerful active galactic nucleus (AGN), accompanied by vigorous and extended star formation. A starburst dominated by O8 stars, with an age of ~6.5 Myr, provides a good fit to the fine-structure line data. This estimated age of the starburst makes it nearly concurrent with the latest episode of AGN activity, suggesting a link between the growth of the supermassive black hole and stellar population in this source. We do not detect the CO(2-1) line, down to a level twelve times lower than the expected value for star forming galaxies. This lack of CO line emission is consistent with recent star formation activity if the star-forming molecular gas has low metallicity, is highly fractionated (such that CO is photodissociated through much of the clouds), or is chemically very young (such that CO has not yet had time to form). It is also possible, though we argue unlikely, that the ensemble of fine structure lines are emitted from the region heated by the AGN.Comment: 10 pages, 4 figures, 2 tables, accepted for publication in the Astrophysical Journa

    The Infrared Database of Extragalactic Observables from Spitzer I: the redshift catalog

    Full text link
    This is the first of a series of papers on the Infrared Database of Extragalactic Observables from Spitzer (IDEOS). In this work we describe the identification of optical counterparts of the infrared sources detected in Spitzer Infrared Spectrograph (IRS) observations, and the acquisition and validation of redshifts. The IDEOS sample includes all the spectra from the Cornell Atlas of Spitzer/IRS Sources (CASSIS) of galaxies beyond the Local Group. Optical counterparts were identified from correlation of the extraction coordinates with the NASA Extragalactic Database (NED). To confirm the optical association and validate NED redshifts, we measure redshifts with unprecedented accuracy on the IRS spectra ({\sigma}(dz/(1+z))=0.0011) by using an improved version of the maximum combined pseudo-likelihood method (MCPL). We perform a multi-stage verification of redshifts that considers alternate NED redshifts, the MCPL redshift, and visual inspection of the IRS spectrum. The statistics is as follows: the IDEOS sample contains 3361 galaxies at redshift 0<z<6.42 (mean: 0.48, median: 0.14). We confirm the default NED redshift for 2429 sources and identify 124 with incorrect NED redshifts. We obtain IRS-based redshifts for 568 IDEOS sources without optical spectroscopic redshifts, including 228 with no previous redshift measurements. We provide the entire IDEOS redshift catalog in machine-readable formats. The catalog condenses our compilation and verification effort, and includes our final evaluation on the most likely redshift for each source, its origin, and reliability estimates.Comment: 11 pages, 6 figures, 1 table. Accepted for publication in MNRAS. Full redshift table in machine-readable format available at http://ideos.astro.cornell.edu/redshifts.htm

    The [Ne III]/[Ne II] line ratio in NGC 253

    Get PDF
    We present results of the mapping of the nucleus of the starburst galaxy NGC 253 and its immediate surroundings using the Infrared Spectrograph on board the Spitzer Space Telescope. The map is centered on the nucleus of the galaxy and spans the inner 800 × 688 pc^2. We perform a brief investigation of the implications of these measurement on the properties of the star formation in this region using theories developed to explain the deficiency of massive stars in starbursts
    corecore