282 research outputs found
Genomic Analysis of Stress Response Against Arsenic in \u3cem\u3eCaenorhabditis elegans\u3c/em\u3e
Arsenic, a known human carcinogen, is widely distributed around the world and found in particularly high concentrations in certain regions including Southwestern US, Eastern Europe, India, China, Taiwan and Mexico. Chronic arsenic poisoning affects millions of people worldwide and is associated with increased risk of many diseases including arthrosclerosis, diabetes and cancer. In this study, we explored genome level global responses to high and low levels of arsenic exposure in Caenorhabditis elegans using Affymetrix expression microarrays. This experimental design allows us to do microarray analysis of dose-response relationships of global gene expression patterns. High dose (0.03%) exposure caused stronger global gene expression changes in comparison with low dose (0.003%) exposure, suggesting a positive dose-response correlation. Biological processes such as oxidative stress, and iron metabolism, which were previously reported to be involved in arsenic toxicity studies using cultured cells, experimental animals, and humans, were found to be affected in C. elegans. We performed genome-wide gene expression comparisons between our microarray data and publicly available C. elegans microarray datasets of cadmium, and sediment exposure samples of German rivers Rhine and Elbe. Bioinformatics analysis of arsenic-responsive regulatory networks were done using FastMEDUSA program. FastMEDUSA analysis identified cancer-related genes, particularly genes associated with leukemia, such as dnj-11, which encodes a protein orthologous to the mammalian ZRF1/MIDA1/MPP11/DNAJC2 family of ribosome-associated molecular chaperones. We analyzed the protective functions of several of the identified genes using RNAi. Our study indicates that C. elegans could be a substitute model to study the mechanism of metal toxicity using high-throughput expression data and bioinformatics tools such as FastMEDUSA
Germ Cell-Somatic Cell Relationships: A Comparative Study of Intercellular Junctions During Spermatogenesis in Selected Non-Mammalian Vertebrates
Specialized germ cell-somatic cell relation-ships were. surveyed in the testis of species representative of four classes of non-mammalian vertebrates. Desmosome-like junctions were present in all classes studied. In the teleost fish studied (bluegill; Lepomis macrochirus) small, infrequent desmosomes, seen between the spherical cyst cells and spermatocytes were characterized by poorly represented subsurface densities. In the bullfrog (Rana catesbeiana), similar desmosome-like junctions were found between cyst cell processes and spermatocytes. Reptilian. (turtle; Pseudameys scripta) desmosome-like Junctions between Sertoli cells and germ cells were heterogeneous and more numerous than those junctions found in fish and amphibians: In general, the reptilian desmosome-like Junctions were extensive structures displaying 10 nm filaments associated with the Sertoli cell component of the junctions. Regions within the desmosome where the two plasma membranes converged suggested that gap junctions were a component of the desmosome-like junctions. Desmosome-gap junctions persisted in turtle spermatids for sometime after nuclear elongation had commenced. In birds (chicken; Gallus domesticus), desmosome-gap junctions similar to those seen in turtles were described between both spermatocytes and Sertoli cells, and spermatids and Sertoli cells. These junctions were frequently lined by saccules of endoplasmic reticulum. The presence of gap junctions suggest the evolution of mechanisms for somatic cell-germ cell communication although more species should be examined to confirm this hypothesis
Evaluation of “Dream Herb,” Calea zacatechichi
A recent surge in the use of dietary supplements, including herbal remedies, necessitates investigations into their safety profiles. “Dream herb,” Calea zacatechichi, has long been used in traditional folk medicine for a variety of purposes and is currently being marketed in the US for medicinal purposes, including diabetes treatment. Despite the inherent vulnerability of the renal system to xenobiotic toxicity, there is a lack of safety studies on the nephrotoxic potential of this herb. Additionally, the high frequency of diabetes-associated kidney disease makes safety screening of C. zacatechichi for safety especially important. We exposed human proximal tubule HK-2 cells to increasing doses of this herb alongside known toxicant and protectant control compounds to examine potential toxicity effects of C. zacatechichi relative to control compounds. We evaluated both cellular and mitochondrial functional changes related to toxicity of this dietary supplement and found that even at low doses evidence of cellular toxicity was significant. Moreover, these findings correlated with significantly elevated levels of nephrotoxicity biomarkers, lending further support for the need to further scrutinize the safety of this herbal dietary supplement
Smartphone assessment of knee flexion compared to radiographic standards
Purpose—Measuring knee range of motion (ROM) is an important assessment for the outcomes of total knee arthroplasty. Recent technological advances have led to the development and use of accelerometer-based smartphone applications to measure knee ROM. The purpose of this study was to develop, standardize, and validate methods of utilizing smartphone accelerometer technology compared to radiographic standards, visual estimation, and goniometric evaluation. Methods—Participants used visual estimation, a long-arm goniometer, and a smartphone accelerometer to determine range of motion of a cadaveric lower extremity; these results were compared to radiographs taken at the same angles. Results—The optimal smartphone position was determined to be on top of the leg at the distal femur and proximal tibia location. Between methods, it was found that the smartphone and goniometer were comparably reliable in measuring knee flexion (ICC = 0.94; 95% CI: 0.91–0.96). Visual estimation was found to be the least reliable method of measurement. Conclusions—The results suggested that the smartphone accelerometer was non-inferior when compared to the other measurement techniques, demonstrated similar deviations from radiographic standards, and did not appear to be influenced by the person performing the measurements or the girth of the extremit
Effect of chronic T-2 toxin exposure in rabbit bucks, determination of the No Observed Adverse Effect Level (NOAEL)
T-2 toxin (T-2) was administered to adult Pannon White (n = 10/group) male rabbits for 65
days, first in a suspension by gavage (0.05, 0.1 or 0.2 mg/animal/day), and secondly mixed
into the feed (0.33 and 0.66 mg/kg feed). In the first experiment 0.1 mg T-2 exposure resulted
in temporary decrease in feed intake, slower increase in the gonadotropin-releasing hormone
(GnRH) induced testosterone synthesis, slight centrolobular infiltration in the liver
and a slight hyperplasia of the Leydig cells. In addition to the temporary feed refusal effect,
0.2 mg T-2 caused a temporary decrease in plasma albumin and urea concentrations, lesser
glutathione peroxidase (GPx) activity in the seminal plasma, a greater (by 320%) ratio of
spermatozoa with cytoplasmic droplets, slower increase in the GnRH-induced testosterone
synthesis, centrolobular infiltration in the liver, slightly hyperaemic testes and increased
proliferative activity of the Leydig cells. The two smaller doses applied in feed (0.33 and
0.66 mg/kg) did not cause any significant adverse effect, and no feed refusal was observed.
According to these results the No Observed Adverse Effect Level (NOAEL) of T-2 for adult
rabbit males was found to be <0.1 mg/animal/day (<0.02 mg/kg b.w./day)
Smartphone assessment of knee flexion compared to radiographic standards
Purpose—Measuring knee range of motion (ROM) is an important assessment for the outcomes of total knee arthroplasty. Recent technological advances have led to the development and use of accelerometer-based smartphone applications to measure knee ROM. The purpose of this study was to develop, standardize, and validate methods of utilizing smartphone accelerometer technology compared to radiographic standards, visual estimation, and goniometric evaluation. Methods—Participants used visual estimation, a long-arm goniometer, and a smartphone accelerometer to determine range of motion of a cadaveric lower extremity; these results were compared to radiographs taken at the same angles. Results—The optimal smartphone position was determined to be on top of the leg at the distal femur and proximal tibia location. Between methods, it was found that the smartphone and goniometer were comparably reliable in measuring knee flexion (ICC = 0.94; 95% CI: 0.91–0.96). Visual estimation was found to be the least reliable method of measurement. Conclusions—The results suggested that the smartphone accelerometer was non-inferior when compared to the other measurement techniques, demonstrated similar deviations from radiographic standards, and did not appear to be influenced by the person performing the measurements or the girth of the extremit
Efficacy of a Mycotoxin Binder against Dietary Fumonisin, Deoxynivalenol, and Zearalenone in Rats
It was hypothesized that a mycotoxin binder, Grainsure E, would inhibit adverse effects of a mixture of fumonisin B1, deoxynivalenol, and zearalenone in rats. For 14 and 28 days, 8–10 Sprague–Dawley rats were fed control diet, Grainsure E (0.5%), toxins (7 μg fumonisin B1/g, 8 μg of deoxynivalenol/g and 0.2 μg of zearalenone/g), toxins (12 μg of fumonisin B1/g, 9 μg of deoxynivalenol/g, and 0.2 μg of zearalenone/g + Grainsure E), or pair-fed to control for food intake of toxin-fed rats. After 28 days, decreased body weight gain was prevented by Grainsure E in toxin-fed female rats, indicating partial protection against deoxynivalenol and fumonisin B1. Two effects of fumonisin B1 were partly prevented by Grainsure E in toxin-fed rats, increased plasma alanine transaminase (ALT) and urinary sphinganine/sphingosine, but sphinganine/sphingosine increase was not prevented in females at the latter time point. Grainsure E prevented some effects of fumonisin B1 and deoxynivalenol in rats
Service-learning opportunities at the Medication Education and Wellness Center at the Homewood Community Engagement Center
This poster showcases the role of student pharmacists within community engagement, while also describing current and future health and wellness programming in collaboration with Community Engagement Centers (CECs). The commitment to community engagement at the University of Pittsburgh results in mutual benefit: improving the health of local neighborhoods while offering valuable learning experiences for health discipline students
Sertoli cell proliferation during the post hatching period in domestic fowl
There has been no study aimed at directly determining of the periods of Sertoli cell proliferation in birds even domestic fowl. The aims of this study were to observe the cessation of post-hatching mitotic proliferation of Sertoli cells in domestic fowl, and to determine the volume density of Sertoli and germ cells during this period. A total of 50 Leghorn chicks were used in this study. The testes sections of the animals were immunostained with BrdU to observe the proliferation of cells from one to 10 weeks of age. The volume density of the Sertoli and germ cells were determined using the standard point counting method. The volume density of the germ cell nuclei was initially less than that of the Sertoli cells but the volume density converged by week 6, and remained relatively constant until the commencement of meiosis. Clear labeling of Sertoli and germ cells was observed from week 1 to week 7. The only those cells still labeled after 8 weeks were germ cells, indicating that Sertoli cell proliferation had ceased. Therefore, it is recommended that any research into the testes of domestic fowl should consider the cessation of Sertoli cell proliferation by approximately 8 weeks
Machine-learning to Stratify Diabetic Patients Using Novel Cardiac Biomarkers and Integrative Genomics
Background: Diabetes mellitus is a chronic disease that impacts an increasing percentage of people each year. Among its comorbidities, diabetics are two to four times more likely to develop cardiovascular diseases. While HbA1c remains the primary diagnostic for diabetics, its ability to predict long-term, health outcomes across diverse demographics, ethnic groups, and at a personalized level are limited. The purpose of this study was to provide a model for precision medicine through the implementation of machine-learning algorithms using multiple cardiac biomarkers as a means for predicting diabetes mellitus development. Methods: Right atrial appendages from 50 patients, 30 non-diabetic and 20 type 2 diabetic, were procured from the WVU Ruby Memorial Hospital. Machine-learning was applied to physiological, biochemical, and sequencing data for each patient. Supervised learning implementing SHapley Additive exPlanations (SHAP) allowed binary (no diabetes or type 2 diabetes) and multiple classifcation (no diabetes, prediabetes, and type 2 diabetes) of the patient cohort with and without the inclusion of HbA1c levels. Findings were validated through Logistic Regression (LR), Linear Discriminant Analysis (LDA), Gaussian Naïve Bayes (NB), Support Vector Machine (SVM), and Classifcation and Regression Tree (CART) models with tenfold cross validation. Results: Total nuclear methylation and hydroxymethylation were highly correlated to diabetic status, with nuclear methylation and mitochondrial electron transport chain (ETC) activities achieving superior testing accuracies in the predictive model (~84% testing, binary). Mitochondrial DNA SNPs found in the D-Loop region (SNP-73G, -16126C, and -16362C) were highly associated with diabetes mellitus. The CpG island of transcription factor A, mitochondrial (TFAM) revealed CpG24 (chr10:58385262, P=0.003) and CpG29 (chr10:58385324, P=0.001) as markers correlating with diabetic progression. When combining the most predictive factors from each set, total nuclear methylation and CpG24 methylation were the best diagnostic measures in both binary and multiple classifcation sets. Conclusions: Using machine-learning, we were able to identify novel as well as the most relevant biomarkers associated with type 2 diabetes mellitus by integrating physiological, biochemical, and sequencing datasets. Ultimately, this approach may be used as a guideline for future investigations into disease pathogenesis and novel biomarker discover
- …
