4,583 research outputs found

    The history of star formation in a LCDM universe

    Full text link
    Employing hydrodynamic simulations of structure formation in a LCDM cosmology, we study the history of cosmic star formation from the "dark ages" at redshift z~20 to the present. In addition to gravity and ordinary hydrodynamics, our model includes radiative heating and cooling of gas, star formation, supernova feedback, and galactic winds. By making use of a comprehensive set of simulations on interlocking scales and epochs, we demonstrate numerical convergence of our results on all relevant halo mass scales, ranging from 10^8 to 10^15 Msun/h. The predicted density of cosmic star formation is broadly consistent with measurements, given observational uncertainty. From the present epoch, it gradually rises by about a factor of ten to a peak at z~5-6, which is beyond the redshift range where it has been estimated observationally. 50% of the stars are predicted to have formed by redshift z~2.1, and are thus older than 10.4 Gyr, while only 25% form at redshifts lower than z~1. The mean age of all stars at the present is about 9 Gyr. Our model predicts a total stellar density at z=0 of Omega_*=0.004, corresponding to about 10% of all baryons being locked up in long-lived stars, in agreement with recent determinations of the luminosity density of the Universe. We determine the "multiplicity function of cosmic star formation" as a function of redshift; i.e. the distribution of star formation with respect to halo mass. We also briefly examine possible implications of our predicted star formation history for reionisation of hydrogen in the Universe. We find that the star formation rate predicted by the simulations is sufficient to account for hydrogen reionisation by z~6, but only if a high escape fraction close to unity is assumed. (abridged)Comment: updated to match published version, minor plotting error in Fig.12 corrected, 25 pages, version with high-resolution figures available at http://www.mpa-garching.mpg.de/~volker/paper_sfr

    Hydrodynamical simulations of cluster formation with central AGN heating

    Full text link
    We analyse a hydrodynamical simulation model for the recurrent heating of the central intracluster medium (ICM) by active galactic nuclei (AGN). Besides the self-gravity of the dark matter and gas components, our approach includes the radiative cooling and photoheating of the gas, as well as a subresolution multiphase model for star formation and supernova feedback. Additionally, we incorporate a periodic heating mechanism in the form of hot, buoyant bubbles, injected into the intragalactic medium (IGM) during the active phases of the accreting central AGN. We use simulations of isolated cluster halos of different masses to study the bubble dynamics and the heat transport into the IGM. We also apply our model to self-consistent cosmological simulations of the formation of galaxy clusters with a range of masses. Our numerical schemes explore a variety of different assumptions for the spatial configuration of AGN-driven bubbles, for their duty cycles and for the energy injection mechanism, in order to obtain better constraints on the underlying physical picture. We argue that AGN heating can substantially affect the properties of both the stellar and gaseous components of clusters of galaxies. Most importantly, it alters the properties of the central dominant (cD) galaxy by reducing the mass deposition rate of freshly cooled gas out of the ICM, thereby offering an energetically plausible solution to the cooling flow problem. At the same time, this leads to reduced or eliminated star formation in the central cD galaxy, giving it red stellar colours as observed.Comment: 22 pages, 15 figures, minor revisions, MNRAS accepte

    Shock finding on a moving-mesh: I. Shock statistics in non-radiative cosmological simulations

    Full text link
    Cosmological shock waves play an important role in hierarchical structure formation by dissipating and thermalizing kinetic energy of gas flows, thereby heating the universe. Furthermore, identifying shocks in hydrodynamical simulations and measuring their Mach number accurately is critical for calculating the production of non-thermal particle components through diffusive shock acceleration. However, shocks are often significantly broadened in numerical simulations, making it challenging to implement an accurate shock finder. We here introduce a refined methodology for detecting shocks in the moving-mesh code AREPO, and show that results for shock statistics can be sensitive to implementation details. We put special emphasis on filtering against spurious shock detections due to tangential discontinuities and contacts. Both of them are omnipresent in cosmological simulations, for example in the form of shear-induced Kelvin-Helmholtz instabilities and cold fronts. As an initial application of our new implementation, we analyse shock statistics in non-radiative cosmological simulations of dark matter and baryons. We find that the bulk of energy dissipation at redshift zero occurs in shocks with Mach numbers around M2.7{\cal M}\approx2.7. Furthermore, almost 40%40\% of the thermalization is contributed by shocks in the warm hot intergalactic medium (WHIM), whereas 60%\approx60\% occurs in clusters, groups and smaller halos. Compared to previous studies, these findings revise the characterization of the most important shocks towards higher Mach numbers and lower density structures. Our results also suggest that regions with densities above and below δb=100\delta_b=100 should be roughly equally important for the energetics of cosmic ray acceleration through large-scale structure shocks.Comment: 16 pages, 13 figures, published in MNRAS, January 201

    Simulating a metallicity-dependent initial mass function: Consequences for feedback and chemical abundances

    Full text link
    Observational and theoretical arguments increasingly suggest that the initial mass function (IMF) of stars may depend systematically on environment, yet most galaxy formation models to date assume a universal IMF. Here we investigate simulations of the formation of Milky Way analogues run with an empirically derived metallicity-dependent IMF and the moving-mesh code AREPO in order to characterize the associated uncertainties. In particular, we compare a constant Chabrier and a varying metallicity-dependent IMF in cosmological, magneto-hydrodynamical zoom-in simulations of Milky Way-sized halos. We find that the non-linear effects due to IMF variations typically have a limited impact on the morphology and the star formation histories of the formed galaxies. Our results support the view that constraints on stellar-to-halo mass ratios, feedback strength, metallicity evolution and metallicity distributions are in part degenerate with the effects of a non-universal, metallicity-dependent IMF. Interestingly, the empirical relation we use between metallicity and the high mass slope of the IMF does not aid in the quenching process. It actually produces up to a factor of 2-3 more stellar mass if feedback is kept constant. Additionally, the enrichment history and the z = 0 metallicity distribution are significantly affected. In particular, the alpha enhancement pattern shows a steeper dependence on iron abundance in the metallicity-dependent model, in better agreement with observational constraints.Comment: 9 pages, published in MNRA

    The formation of disc galaxies in high resolution moving-mesh cosmological simulations

    Full text link
    We present cosmological hydrodynamical simulations of eight Milky Way-sized haloes that have been previously studied with dark matter only in the Aquarius project. For the first time, we employ the moving-mesh code AREPO in zoom simulations combined with a comprehensive model for galaxy formation physics designed for large0 cosmological simulations. Our simulations form in most of the eight haloes strongly disc-dominated systems with realistic rotation curves, close to exponential surface density profiles, a stellar-mass to halo-mass ratio that matches expectations from abundance matching techniques, and galaxy sizes and ages consistent with expectations from large galaxy surveys in the local Universe. There is no evidence for any dark matter core formation in our simulations, even so they include repeated baryonic outflows by supernova-driven winds and black hole quasar feedback. For one of our haloes, the object studied in the recent `Aquila' code comparison project, we carried out a resolution study with our techniques, covering a dynamic range of 64 in mass resolution. Without any change in our feedback parameters, the final galaxy properties are reassuringly similar, in contrast to other modelling techniques used in the field that are inherently resolution dependent. This success in producing realistic disc galaxies is reached, in the context of our interstellar medium treatment, without resorting to a high density threshold for star formation, a low star formation efficiency, or early stellar feedback, factors deemed crucial for disc formation by other recent numerical studies.Comment: 28 pages, 23 figures, 2 tables. Accepted for publication in MNRAS. Added 2 figures and minor text changes to match the accepted versio

    Magnetic fields in cosmological simulations of disk galaxies

    Full text link
    Observationally, magnetic fields reach equipartition with thermal energy and cosmic rays in the interstellar medium of disk galaxies such as the Milky Way. However, thus far cosmological simulations of the formation and evolution of galaxies have usually neglected magnetic fields. We employ the moving-mesh code \textsc{Arepo} to follow for the first time the formation and evolution of a Milky Way-like disk galaxy in its full cosmological context while taking into account magnetic fields. We find that a prescribed tiny magnetic seed field grows exponentially by a small-scale dynamo until it saturates around z=4z=4 with a magnetic energy of about 10%10\% of the kinetic energy in the center of the galaxy's main progenitor halo. By z=2z=2, a well-defined gaseous disk forms in which the magnetic field is further amplified by differential rotation, until it saturates at an average field strength of \sim 6 \mug in the disk plane. In this phase, the magnetic field is transformed from a chaotic small-scale field to an ordered large-scale field coherent on scales comparable to the disk radius. The final magnetic field strength, its radial profile and the stellar structure of the disk compare well with observational data. A minor merger temporarily increases the magnetic field strength by about a factor of two, before it quickly decays back to its saturation value. Our results are highly insensitive to the initial seed field strength and suggest that the large-scale magnetic field in spiral galaxies can be explained as a result of the cosmic structure formation process.Comment: 5 pages, 4 figures, accepted to ApJ

    Future Evolution of the Intergalactic Medium in a Universe Dominated by a Cosmological Constant

    Full text link
    We simulate the evolution of the intergalactic medium (IGM) in a universe dominated by a cosmological constant. We find that within a few Hubble times from the present epoch, the baryons will have two primary phases: one phase composed of low-density, low-temperature, diffuse, ionized gas which cools exponentially with cosmic time due to adiabatic expansion, and a second phase of high-density, high-temperature gas in virialized dark matter halos which cools much more slowly by atomic processes. The mass fraction of gas in halos converges to ~40% at late times, about twice its calculated value at the present epoch. We find that in a few Hubble times, the large scale filaments in the present-day IGM will rarefy and fade away into the low-temperature IGM, and only islands of virialized gas will maintain their physical structure. We do not find evidence for fragmentation of the diffuse IGM at later times. More than 99% of the gas mass will maintain a steady ionization fraction above 80% within a few Hubble times. The diffuse IGM will get extremely cold and dilute but remain highly ionized, as its recombination time will dramatically exceed the age of the universe.Comment: 22 pages, 10 figures. Accepted to New Astronomy. Movies and a higher resolution version of the paper are available at http://cfa-www.harvard.edu/~knagamine/FutureIG

    Quasar Clustering in Cosmological Hydrodynamic Simulations: Evidence for mergers

    Full text link
    We examine the clustering properties of a population of quasars drawn from fully hydrodynamic cosmological simulations that directly follow black hole growth. We find that the black hole correlation function is best described by two distinct components: contributions from BH pairs occupying the same dark matter halo ('1-halo term') which dominate at scales below 300 kpc/h, and contributions from BHs occupying separate halos ('2-halo term') which dominate at larger scales. From the 2-halo BH term we find a typical host halo mass for faint-end quasars (those probed in our simulation volumes) ranging from 10^11 to a few 10^12 solar masses from z=5 to z=1 respectively (consistent with the mean halo host mass). The BH correlation function shows a luminosity dependence as a function of redshift, though weak enough to be consistent with observational constraints. At small scales, the high resolution of our simulations allows us to probe the 1-halo clustering in detail, finding that the 1-halo term follows an approximate power law, lacking the characteristic decrease in slope at small scales found in 1-halo terms for galaxies and dark matter. We show that this difference is a direct result of a boost in the small-scale quasar bias caused by galaxies hosting multiple quasars (1-subhalo term) following a merger event, typically between a large central subgroup and a smaller, satellite subgroup hosting a relatively small black hole. We show that our predicted small-scale excess caused by such mergers is in good agreement with both the slope and amplitude indicated by recent small-scale measurements. Finally, we note the excess to be a strong function of halo mass, such that the observed excess is well matched by the multiple black holes of intermediate mass (10^7-10^8 solar masses) found in hosts of 4-8*10^11 solar masses, a range well probed by our simulations.Comment: 12 pages, 10 figures. Submitted to MNRA
    corecore