69 research outputs found

    Designing Audience-Centered Interactive Voice Response Messages to Promote Cancer Screenings Among Low-Income Latinas

    Get PDF
    Introduction: Cancer screening rates among Latinas are suboptimal. The objective of this study was to explore how Latinas perceive cancer screening and the use and design of interactive voice response (IVR) messages to prompt scheduling of 1 or more needed screenings. Methods: Seven focus groups were conducted with Latina community health center patients (n = 40) in need of 1 or more cancer screenings: 5 groups were of women in need of 1 cancer screening (breast, cervical, or colorectal), and 2 groups were of women in need of multiple screenings. A bilingual researcher conducted all focus groups in Spanish using a semistructured guide. Focus groups were recorded, transcribed, and translated into English for analysis. Emergent themes were identified by using thematic content analysis. Results: Participants were familiar with cancer screening and viewed it positively, although barriers to screening were identified (unaware overdue for screening, lack of physician referral, lack of insurance or insufficient insurance coverage, embarrassment or fear of screening procedures, fear of screening outcomes). Women needing multiple screenings voiced more concern about screening procedures, whereas women in need of a single screening expressed greater worry about the screening outcome. Participants were receptive to receiving IVR messages and believed that culturally appropriate messages that specified needed screenings while emphasizing the benefit of preventive screening would motivate them to schedule needed screenings. Conclusion: Participants’ receptiveness to IVR messages suggests that these messages may be an acceptable strategy to promote cancer screening among underserved Latina patients. Additional research is needed to determine the effectiveness of IVR messages in promoting completion of cancer screening

    Identification of genes preferentially expressed in wheat egg cells and zygotes

    Get PDF
    Wheat genes differentially expressed in the egg cell before and after fertilization were identified. The data support zygotic gene activation before the first cell division in wheat. To have an insight into fertilization-induced gene expression, cDNA libraries have been prepared from isolated wheat egg cells and one-celled zygotes. Two-hundred and twenty-six egg cell and 253 zygote-expressed EST sequences were determined. Most of the represented transcripts were detected in the wheat egg cell or zygote transcriptome at the first time. Expression analysis of fourteen of the identified genes and three controls was carried out by real-time quantitative PCR. The preferential expression of all investigated genes in the female gametophyte-derived samples (egg cells, zygotes, two-celled proembryos, and basal ovule parts with synergids) in comparison to the anthers, and the leaves were verified. Three genes with putative signaling/regulatory functions were expressed at a low level in the egg cell but exhibited increased (2-to-33-fold) relative expression in the zygote and the proembryo. Genes with high EST abundance in cDNA libraries exhibited strong expression in the egg cell and the zygote, while the ones coding for unknown or hypothetical proteins exhibited differential expression patterns with preferential transcript accumulation in egg cells and/or zygotes. The obtained data support the activation of the zygotic genome before the first cell division in wheat

    Ribosomal RNA of Hyacinthus orientalis L. female gametophyte cells before and after fertilization

    Get PDF
    The nucleolar activity of Hyacinthus orientalis L. embryo sac cells was investigated. The distributions of nascent pre-rRNA (ITS1), 26S rRNA and of the 5S rRNA and U3 snoRNA were determined using fluorescence in situ hybridization (FISH). Our results indicated the different rRNA metabolism of the H. orientalis female gametophyte cells before and after fertilization. In the target cells for the male gamete, i.e., the egg cell and the central cell whose activity is silenced in the mature embryo sac (Pięciński et al. in Sex Plant Reprod 21:247–257, 2008; Niedojadło et al. in Planta doi:10.1007/s00425-012-1599-9, 2011), rRNA metabolism is directed at the accumulation of rRNPs in the cytoplasm and immature transcripts in the nucleolus. In both cells, fertilization initiates the maturation of the maternal pre-rRNA and the expression of zygotic rDNA. The resumption of rRNA transcription observed in the hyacinth zygote indicates that in plants, there is a different mechanism for the regulation of RNA Pol I activity than in animals. In synergids and antipodal cells, which have somatic functions, the nucleolar activity is correlated with the metabolic activity of these cells and changes in successive stages of embryo sac development

    Transcriptional activity of Hyacinthus orientalis L. female gametophyte cells before and after fertilization

    Get PDF
    We characterized three phases of Hyacinthus orientalis L. embryo sac development, in which the transcriptional activity of the cells differed using immunolocalization of incorporated 5′-bromouracil, the total RNA polymerase II pool and the hypo- (initiation) and hyperphosphorylated (elongation) forms of RNA Pol II. The first stage, which lasts from the multinuclear stage to cellularization, is a period of high transcriptional activity, probably related to the maturation of female gametophyte cells. The second stage, encompassing the period of embryo sac maturity and the progamic phase, involves the transcriptional silencing of cells that will soon undergo fusion with male gametes. During this period in the hyacinth egg cell, there are almost no newly formed transcripts, and only a small pool of RNA Pol II is present in the nucleus. The transcriptional activity of the central cell is only slightly higher than that observed in the egg cell. The post-fertilization stage is related to the transcriptional activation of the zygote and the primary endosperm cell. The rapid increase in the pool of newly formed transcripts in these cells is accompanied by an increase in the pool of RNA Pol II, and the pattern of enzyme distribution in the zygote nucleus is similar to that observed in the somatic cells of the ovule. Our data, together with the earlier results of Pięciński et al. (2008), indicate post-fertilization synthesis and the maturation of numerous mRNA transcripts, suggesting that fertilization in H. orientalis induces the activation of the zygote and endosperm genomes

    PCP-B class pollen coat proteins are key regulators of the hydration checkpoint in Arabidopsis thaliana pollen-stigma interactions

    Get PDF
    The establishment of pollen–pistil compatibility is strictly regulated by factors derived from both male and female reproductive structures. Highly diverse small cysteine-rich proteins (CRPs) have been found to play multiple roles in plant reproduction, including the earliest stages of the pollen–stigma interaction. Secreted CRPs found in the pollen coat of members of the Brassicaceae, the pollen coat proteins (PCPs), are emerging as important signalling molecules that regulate the pollen–stigma interaction. Using a combination of protein characterization, expression and phylogenetic analyses we identified a novel class of Arabidopsis thaliana pollen-borne CRPs, the PCP-Bs (for pollen coat protein B-class) that are related to embryo surrounding factor (ESF1) developmental regulators. Single and multiple PCP-B mutant lines were utilized in bioassays to assess effects on pollen hydration, adhesion and pollen tube growth. Our results revealed that pollen hydration is severely impaired when multiple PCP-Bs are lost from the pollen coat. The hydration defect also resulted in reduced pollen adhesion and delayed pollen tube growth in all mutants studied. These results demonstrate that AtPCP-Bs are key regulators of the hydration ‘checkpoint’ in establishment of pollen–stigma compatibility. In addition, we propose that interspecies diversity of PCP-Bs may contribute to reproductive barriers in the Brassicaceae
    corecore