3,631 research outputs found
Social-Aware Forwarding Improves Routing Performance in Pocket Switched Networks
Several social-aware forwarding strategies have been recently introduced in
opportunistic networks, and proved effective in considerably in- creasing
routing performance through extensive simulation studies based on real-world
data. However, this performance improvement comes at the expense of storing a
considerable amount of state information (e.g, history of past encounters) at
the nodes. Hence, whether the benefits on routing performance comes directly
from the social-aware forwarding mechanism, or indirectly by the fact state
information is exploited is not clear. Thus, the question of whether
social-aware forwarding by itself is effective in improving opportunistic
network routing performance remained unaddressed so far. In this paper, we give
a first, positive answer to the above question, by investigating the expected
message delivery time as the size of the net- work grows larger
On Leveraging Partial Paths in Partially-Connected Networks
Mobile wireless network research focuses on scenarios at the extremes of the
network connectivity continuum where the probability of all nodes being
connected is either close to unity, assuming connected paths between all nodes
(mobile ad hoc networks), or it is close to zero, assuming no multi-hop paths
exist at all (delay-tolerant networks). In this paper, we argue that a sizable
fraction of networks lies between these extremes and is characterized by the
existence of partial paths, i.e. multi-hop path segments that allow forwarding
data closer to the destination even when no end-to-end path is available. A
fundamental issue in such networks is dealing with disruptions of end-to-end
paths. Under a stochastic model, we compare the performance of the established
end-to-end retransmission (ignoring partial paths), against a forwarding
mechanism that leverages partial paths to forward data closer to the
destination even during disruption periods. Perhaps surprisingly, the
alternative mechanism is not necessarily superior. However, under a stochastic
monotonicity condition between current v.s. future path length, which we
demonstrate to hold in typical network models, we manage to prove superiority
of the alternative mechanism in stochastic dominance terms. We believe that
this study could serve as a foundation to design more efficient data transfer
protocols for partially-connected networks, which could potentially help
reducing the gap between applications that can be supported over disconnected
networks and those requiring full connectivity.Comment: Extended version of paper appearing at IEEE INFOCOM 2009, April
20-25, Rio de Janeiro, Brazi
Ellogon: A New Text Engineering Platform
This paper presents Ellogon, a multi-lingual, cross-platform, general-purpose
text engineering environment. Ellogon was designed in order to aid both
researchers in natural language processing, as well as companies that produce
language engineering systems for the end-user. Ellogon provides a powerful
TIPSTER-based infrastructure for managing, storing and exchanging textual data,
embedding and managing text processing components as well as visualising
textual data and their associated linguistic information. Among its key
features are full Unicode support, an extensive multi-lingual graphical user
interface, its modular architecture and the reduced hardware requirements.Comment: 7 pages, 9 figures. Will be presented to the Third International
Conference on Language Resources and Evaluation - LREC 200
Optimization of Patterned Surfaces for Improved Superhydrophobicity Through Cost-Effective Large-Scale Computations
The growing need for creating surfaces with specific wetting properties, such
as superhyrdophobic behavior, asks for novel methods for their efficient
design. In this work, a fast computational method for the evaluation of
patterned superhyrdophobic surfaces is introduced. The hydrophobicity of a
surface is quantified in energy terms through an objective function. The
increased computational cost led to the parallelization of the method with the
Message Passing Interface (MPI) communication protocol that enables
calculations on distributed memory systems allowing for parametric
investigations at acceptable time frames. The method is demonstrated for a
surface consisting of an array of pillars with inverted conical (frustum)
geometry. The parallel speedup achieved allows for low cost parametric
investigations on the effect of the fine features (curvature and slopes) of the
pillars on the superhydophobicity of the surface and consequently for the
optimization of superhyrdophobic surfaces.Comment: 18 pages, 18 figure
Μαθηματικός προγραμματισμός με χρήση του κριτηρίου Minimax Regret στη διαχείριση αστικών στερεών απορριμμάτων
- …
