2,277 research outputs found
Time-domain chirally-sensitive three-pulse coherent probes of vibrational excitons in proteins
The third order optical response of bosonic excitons is calculated using the
Green's function solution of the Nonlinear Exciton Equations (NEE) which
establish a quasiparticle-scattering mechanism for optical nonlinearities. Both
time ordered and non ordered forms of the response function which represent
time and frequency domain techniques, respectively, are derived. New components
of the response tensor are predicted for isotropic ensembles of periodic chiral
structures to first order in the optical wavevector. The nonlocal nonlinear
response function is calculated in momentum space, where the finite
exciton-exciton interaction length greatly reduces the computational effort.
Applications are made to coupled anharmonic vibrations in the amide I infrared
band of peptides. Chirally-sensitive and non sensitive signals for alpha
helices and antiparallel beta sheets are compared.Comment: 26 pages, 6 figure
Natural Suppression of the Aquatic Weed Salvinia molesta D.S. Mitchell, by Two Previously Unreported Fungal Pathogens
Salvinia molesta
D. S. Mitchell (Salviniaceae), variously
called giant salvinia, water fern or African payal, is a vegetatively
reproducing, perennial, free-floating, aquatic weed,
native to southeastern Brazil (Waterhouse and Norris 1987).
It (hereafter called salvinia) is a very serious weed in most
regions outside its native range (Harley and Mitchell 1981)
including India. The purpose of this paper is to report
on two fungal pathogens that were found to be the cause
of a sudden decline in salvinia in Bangalore.(PDF has 4 pages.
The RCK2 domain of the human BKCa channel is a calcium sensor
Large conductance voltage and Ca2+-dependent K+ channels (BKCa) are activated by both membrane depolarization and intracellular Ca2+. Recent studies on bacterial channels have proposed that a Ca2+-induced conformational change within specialized regulators of K+ conductance (RCK) domains is responsible for channel gating. Each pore-forming α subunit of the homotetrameric BKCa channel is expected to contain two intracellular RCK domains. The first RCK domain in BKCa channels (RCK1) has been shown to contain residues critical for Ca2+ sensitivity, possibly participating in the formation of a Ca2+-binding site. The location and structure of the second RCK domain in the BKCa channel (RCK2) is still being examined, and the presence of a high-affinity Ca2+-binding site within this region is not yet established. Here, we present a structure-based alignment of the C terminus of BKCa and prokaryotic RCK domains that reveal the location of a second RCK domain in human BKCa channels (hSloRCK2). hSloRCK2 includes a high-affinity Ca2+-binding site (Ca bowl) and contains similar secondary structural elements as the bacterial RCK domains. Using CD spectroscopy, we provide evidence that hSloRCK2 undergoes a Ca2+-induced change in conformation, associated with an α-to-β structural transition. We also show that the Ca bowl is an essential element for the Ca2+-induced rearrangement of hSloRCK2. We speculate that the molecular rearrangements of RCK2 likely underlie the Ca2+-dependent gating mechanism of BKCa channels. A structural model of the heterodimeric complex of hSloRCK1 and hSloRCK2 domains is discussed
Stabilisation of Na,K-ATPase structure by the cardiotonic steroid ouabain
Cardiotonic steroids such as ouabain bind with high affinity to the membrane-bound cation-transporting P-type Na,K-ATPase, leading to complete inhibition of the enzyme. Using synchrotron radiation circular dichroism we show that the enzyme-ouabain complex is less susceptible to thermal denaturation (unfolding) than the ouabain-free enzyme, and this protection is observed with Na,K-ATPase purified from pig kidney as well as from shark rectal glands. It is also shown that detergent-solubilised preparations of Na,K-ATPase are stabilised by ouabain, which could account for the successful crystallisation of Na,K-ATPase in the ouabain-bound form. The secondary structure is not significantly affected by the binding of ouabain. Ouabain appears however, to induce a reorganization of the tertiary structure towards a more compact protein structure which is less prone to unfolding; recent crystal structures of the two enzymes are consistent with this interpretation. These circular dichroism spectroscopic studies in solution therefore provide complementary information to that provided by crystallography
The RCK1 domain of the human BK_(Ca) channel transduces Ca^(2+) binding into structural rearrangements
Large-conductance voltage- and Ca^(2+)-activated K^+ (BK_(Ca)) channels play a fundamental role in cellular function by integrating information from their voltage and Ca2+ sensors to control membrane potential and Ca^(2+) homeostasis. The molecular mechanism of Ca^(2+)-dependent regulation of BKCa channels is unknown, but likely relies on the operation of two cytosolic domains, regulator of K^+ conductance (RCK)1 and RCK2. Using solution-based investigations, we demonstrate that the purified BK_(Ca) RCK1 domain adopts an α/β fold, binds Ca^(2+), and assembles into an octameric superstructure similar to prokaryotic RCK domains. Results from steady-state and time-resolved spectroscopy reveal Ca^(2+)-induced conformational changes in physiologically relevant [Ca^(2+)]. The neutralization of residues known to be involved in high-affinity Ca^(2+) sensing (D362 and D367) prevented Ca^(2+)-induced structural transitions in RCK1 but did not abolish Ca^(2+) binding. We provide evidence that the RCK1 domain is a high-affinity Ca^(2+) sensor that transduces Ca^(2+) binding into structural rearrangements, likely representing elementary steps in the Ca^(2+)-dependent activation of human BK_(Ca) channels
Explicit factorization of external coordinates in constrained Statistical Mechanics models
If a macromolecule is described by curvilinear coordinates or rigid
constraints are imposed, the equilibrium probability density that must be
sampled in Monte Carlo simulations includes the determinants of different
mass-metric tensors. In this work, we explicitly write the determinant of the
mass-metric tensor G and of the reduced mass-metric tensor g, for any molecule,
general internal coordinates and arbitrary constraints, as a product of two
functions; one depending only on the external coordinates that describe the
overall translation and rotation of the system, and the other only on the
internal coordinates. This work extends previous results in the literature,
proving with full generality that one may integrate out the external
coordinates and perform Monte Carlo simulations in the internal conformational
space of macromolecules. In addition, we give a general mathematical argument
showing that the factorization is a consequence of the symmetries of the metric
tensors involved. Finally, the determinant of the mass-metric tensor G is
computed explicitly in a set of curvilinear coordinates specially well-suited
for general branched molecules.Comment: 22 pages, 2 figures, LaTeX, AMSTeX. v2: Introduccion slightly
extended. Version in arXiv is slightly larger than the published on
Broccoli or Sulforaphane:Is It the Source or Dose That Matters?
There is robust epidemiological evidence for the beneficial effects of broccoli consumption on health, many of them clearly mediated by the isothiocyanate sulforaphane. Present in the plant as its precursor, glucoraphanin, sulforaphane is formed through the actions of myrosinase, a β-thioglucosidase present in either the plant tissue or the mammalian microbiome. Since first isolated from broccoli and demonstrated to have cancer chemoprotective properties in rats in the early 1990s, over 3000 publications have described its efficacy in rodent disease models, underlying mechanisms of action or, to date, over 50 clinical trials examining pharmacokinetics, pharmacodynamics and disease mitigation. This review evaluates the current state of knowledge regarding the relationships between formulation (e.g., plants, sprouts, beverages, supplements), bioavailability and efficacy, and the doses of glucoraphanin and/or sulforaphane that have been used in pre-clinical and clinical studies. We pay special attention to the challenges for better integration of animal model and clinical studies, particularly with regard to selection of dose and route of administration. More effort is required to elucidate underlying mechanisms of action and to develop and validate biomarkers of pharmacodynamic action in humans. A sobering lesson is that changes in approach will be required to implement a public health paradigm for dispensing benefit across all spectrums of the global population
Comparative study of the functional properties of lupin, green pea, fava bean, hemp, and buckwheat flours as affected by pH
Acknowledgments This work is part of the Strategic Research 2011–2016 and is funded by the Scottish Government’s Rural and Environment Science and Analytical Services Division (RESAS).Peer reviewedPublisher PD
Respiratory Sound Analysis for the Evidence of Lung Health
Significant changes have been made on audio-based technologies over years in several different fields along with healthcare industry. Analysis of Lung sounds is a potential source of noninvasive, quantitative information along with additional objective on the status of the pulmonary system. To do that medical professionals listen to sounds heard over the chest wall at different positions with a stethoscope which is known as auscultation and is important in diagnosing respiratory diseases. At times, possibility of inaccurate interpretation of respiratory sounds happens because of clinician’s lack of considerable expertise or sometimes trainees such as interns and residents misidentify respiratory sounds. We have built a tool to distinguish healthy respiratory sound from non-healthy ones that come from respiratory infection carrying patients. The audio clips were characterized using Linear Predictive Cepstral Coefficient (LPCC)-based features and the highest possible accuracy of 99.22% was obtained with a Multi-Layer Perceptron (MLP)- based classifier on the publicly available ICBHI17 respiratory sounds dataset [1] of size 6800+ clips. The system also outperformed established works in literature and other machine learning techniques. In future we will try to use larger dataset with other acoustic techniques along with deep learning-based approaches and try to identify the nature and severity of infection using respiratory sounds
- …
