24 research outputs found
Regulation and Characterization of Transcription Factor Activator Protein-2 Alpha (AP-2α)
Introduction
AP2α is a 52 kDa retinoic acid inducible and developmentally regulated activator of
transcription, which binds to the DNA in a sequence-specific manner. Transcription factor AP-2α was isolated from HeLa cells by affinity chromatography using specific binding sites with in SV40 and human metallothionein promoters. Further screening of HeLa cDNA library with oligonucleotide probes predicted partial peptide sequence which led to the isolation of AP-2α
cDNA and subsequently it was mapped to chromosome 6 near HLA locus. A differentially spliced version of AP-2α, which lacks most of the C-terminus, encodes a dominant negative protein (AP-2B). Subsequent studies led to the identification of four more isoforms: AP-2β, AP-2γ, AP-2δ and AP-2ε. AP-2 family members can form homo or hetero dimers among themselves through the unique C-terminal helix span helix motif and bind DNA through basic domain lies N-terminus of DNA binding domain.
Several evidences suggest that AP-2α can act as a tumor suppressor gene. It has been
shown that AP-2α can activate growth suppressor genes like p21WAF1/CIP1. Transforming viral oncogenes like adenovirus E1A and SV40 large T antigen have been shown to alter AP-2α function. In addition, reduced expression of AP-2α has been reported in human breast, ovary,
colon, skin, brain and prostate cancers. Further, supporting evidences suggest that more invasiveness and tumorogenicity was observed when dominant negative mutant of AP-2α was expressed in melanoma cells.
In this work, we have carried out a systematic study to find the various signal
transduction pathways which regulate AP-2 activity as well as we attempted to demonstrate the importance of DNA binding domain in the growth inhibitory functions of AP-2α. HDAC inhibitors (HDIs) activate AP-2 activity through spleen tyrosine kinase (Syk)
In the literature, ample evidences are available that genotoxic drugs such as adriamycin, induce tumor suppressors like p53 and p73. In this study, we have screened pharmacological drugs which damage DNA and specific inhibitors of various signal transduction pathways for their ability to activate AP-2 activity. AP-2 specific reporter, 3Χ-AP2-CAT was used in this
study to measure the AP-2 activity. Of all the compounds studied, we found that Histone
Deacetylase Inhibitors (HDIs) efficiently activated AP-2 activity and was found to be specific as they failed to activate 3X-AP2 mut CAT, which contains mutated AP-2 binding sites as well as pGL tk Luc, which contains thymidine kinase minimal promoter and no AP-2 binding sites.
To understand the mechanism of HDI-mediated of AP-2 activation, AP-2 isoforms and its coactivators transcript and protein levels were analyzed. We found significant change in transcript levels of the some of the molecules tested. While the endogenous protein levels of various AP-2 isoforms were undetectable, we found stabilization of AP-2α protein expressed from exogenous
source in cells treated with HDIs. HDI stabilized AP-2α was found to be functionally active as it showed increased sequence-specific DNA-binding as well as increased apoptosis. While HDIs known for their ability to modulate the gene activities by chromatin remodeling, it is also known that they alter various signal transduction pathways. In an effort to find pathway(s) by which HDIs activate AP-2 activity, we found that HDIs failed to activate AP-2 reporter in the presence of staurosporine suggesting the involvement a staurosporine sensitive pathway(s) in
this process. Stauosporine is a non-specific kinase inhibitor of different signaling pathways.
Further studies using different pathway specific inhibitors identified that spleen tyrosine kinase (Syk) is essential for HDIs mediated activation of AP-2 activity. Syk is a non receptor tyrosine kinase which is known to be activated in stress conditions. Syk is considered to be a tumor suppressor since Syk over expression leads to growth suppression of breast cancer cells and is
also inactivated in a subset of breast cancers. These results suggest that HDI mediated activation of AP-2 involves AP-2α stabilization through Syk pathway.
Regulation of AP-2 by MAP kinase pathway
Cell growth, differentiation, and apoptosis are mediated by the activation of mitogenactivated protein kinase (MAPK) pathways. These kinases constitute MAP kinase cascades mainly regulated through phosphorylation status. In mammalian cells, at least four MAPKs, namely, extracellular signal-regulated kinases (ERKs), c-Jun N-terminal kinase/stress-activated
protein kinases (JNK/SAPKs), p38 and ERK5/big MAP kinase have been identified. The ERKs are usually activated by mitogenic stimuli which in turn increase the proliferation and survival.
Over expression of any activator of this signaling cascade lead to the unregulated proliferation of cells. In many cancers, ERK pathways are known to be up regulated. In this study, we found that MEK (MEK is the immediate upstream regulator of ERK) inhibitors - PD98059 and U0126 activate 3X-AP2-CAT suggesting that AP-2 activity is repressed by activated MAP kinase pathway. MEK inhibitor mediated activation was found to be specific because they failed to
activate transcription from pGL tk Luc which contains thymidine kinase minimal promoter and no AP-2 binding sites. To understand the mechanism of MEK inhibitor-mediated of AP-2
activation, AP-2 isoforms and its coactivators transcript and protein levels were analyzed. We found significant change in transcript levels of the some of the molecules tested. The endogenous protein levels of various AP-2 isoforms were undetectable. When AP-2α was exogenously expressed, while no change in protein levels and DNA-binding ability was seen, we found evidence for appearance of post-ranslationally modified AP-2α protein in U0126 treated cells. We also found CITED2 (CBP/p300-interacting transactivator 2, co-activator of AP-2α) transcript levels were up regulated in UO126 treated cells. Post translational modifications of AP-2α and increased and increased CITED2 levels may be responsible for MEK inhibitor mediated AP-2 activation. Thus we conclude that ERK pathway, which is an oncogenic MAP kinase pathway, inhibits AP-2 activity thereby suggesting the importance of down regulation of AP-2 activity during transformation.
Essential role of DNA-binding domain of AP-2α for its growth inhibitory functions
Transcription factor AP-2α has three distinct domains, N-terminal transactivation
domain (52-108 aa), C-terminal DNA binding domain (204-408 aa) and dimerization domain
(277-395 aa) which lies within the DNA binding domain. AP-2α exerts its effects through binding to specific DNA sequence in the promoter of its target genes leading to either repression or activation. Recent evidences suggest that AP-2α represses many genes through its competitive binding to overlapping AP-2 and other transcription factor binding sites. This suggests an important role exclusively for the DNA binding domain in AP-2α mediated functions. To address the importance of DNA binding domain for AP-2α mediated apoptosis,
we have tested the ability different deletion/point mutants of AP-2α with varying DNA binding and transactivation capability to perform growth suppressor function and ability to induce apoptosis. Replication-deficient recombinant adenoviruses expressing different mutants were used in this study. We found that an intact DNA-binding domain alone even in the absence of
activation domain is sufficient for AP-2α to inhibit colony formation and to induce significant levels of apoptosis. These results suggest an important role for DNA binding domain growth inhibitory functions of AP-2α and thereby implying the importance of transcriptional repression in AP-2α functions
LC/MS:AN ESSENTIAL TOOL IN DRUG DEVELOPMENT
The combination of high-performance liquid chromatography and mass spectrometry (LC/MS) has had a sign cant impact on drug development over the past decade. Continual improvements in LC/MS interface technologies combined with powerful features for structure analysis, qualitative and quantitative,have resulted in a widened scope of application. These improvements coincided with breakthroughs in combinatorial chemistry, molecular biology, and an overall industry trend of accelerated development.The use of high-performance liquid chromatographycombined with mass spectrometry (HPLC MS) or tandem mass spectrometry (HPLC MS MS) has proven to be the analytical technique of choice for most assays used in various stages of new drug discovery. Asummary of the key components of HPLC MS systems, as well as an overview of major application areas that use this technique as part of the drug discovery process, will be described here. This review will also provide an introduction into the various types of mass spectrometers that can be selected for the multiple tasks that can be performed using LC MS as the analytical tool. The strategies for optimizing the use of this technique and also the potential problems and how to avoid them will be highlighted
MicroRNA-138 is a Prognostic Biomarker for Triple-Negative Breast Cancer and Promotes Tumorigenesis via TUSC2 repression
Breast cancer manifests as a spectrum of subtypes with distinct molecular signatures, and different responses to treatment. Of these subtypes, triple-negative breast cancer (TNBC) has the worst prognoses and limited therapeutic options. Here we report aberrant expression of microRNA-138 (miR-138) in TNBC. Increased miR-138 expression is highly specific to this subtype, correlates with poor prognosis in patients, and is functionally relevant to cancer progression. Our findings establish miR-138 as a specific diagnostic and prognostic biomarker for TNBC. OncomiR-138 is pro-survival; sequence-specific miR-138 inhibition blocks proliferation, promotes apoptosis and inhibits tumour growth in-vivo. miR-138 directly targets a suite of pro-apoptotic and tumour suppressive genes, including tumour suppressor candidate 2 (TUSC2). miR-138 silences TUSC2 by binding to a unique 5\u27-UTR target-site, which overlaps with the translation start-site of the transcript. Over-expression of TUSC2 mimics the phenotype of miR-138 knockdown and functional rescue experiments confirm that TUSC2 is a direct downstream target of miR-138. Our report of miR-138 as an oncogenic driver in TNBC, positions it as a viable target for oligonucleotide therapeutics and we envision the potential value of using antimiR-138 as an adjuvant therapy to alleviate this therapeutically intractable cancer
Integrative analysis identifies key molecular signatures underlying neurodevelopmental deficits in fragile X syndrome
BACKGROUND: Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by epigenetic silencing of FMR1 and loss of FMRP expression. Efforts to understand the molecular underpinnings of the disease have been largely performed in rodent or nonisogenic settings. A detailed examination of the impact of FMRP loss on cellular processes and neuronal properties in the context of isogenic human neurons remains lacking. METHODS: Using CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 to introduce indels in exon 3 of FMR1, we generated an isogenic human pluripotent stem cell model of FXS that shows complete loss of FMRP expression. We generated neuronal cultures and performed genome-wide transcriptome and proteome profiling followed by functional validation of key dysregulated processes. We further analyzed neurodevelopmental and neuronal properties, including neurite length and neuronal activity, using multielectrode arrays and patch clamp electrophysiology. RESULTS: We showed that the transcriptome and proteome profiles of isogenic FMRP-deficient neurons demonstrate perturbations in synaptic transmission, neuron differentiation, cell proliferation and ion transmembrane transporter activity pathways, and autism spectrum disorder-associated gene sets. We uncovered key deficits in FMRP-deficient cells demonstrating abnormal neural rosette formation and neural progenitor cell proliferation. We further showed that FMRP-deficient neurons exhibit a number of additional phenotypic abnormalities, including neurite outgrowth and branching deficits and impaired electrophysiological network activity. These FMRP-deficient related impairments have also been validated in additional FXS patient-derived human-induced pluripotent stem cell neural cells. CONCLUSIONS: Using isogenic human pluripotent stem cells as a model to investigate the pathophysiology of FXS in human neurons, we reveal key neural abnormalities arising from the loss of FMRP.Peer reviewe
p73β-Expressing recombinant adenovirus: a potential anticancer agent
Tumor suppressor p53-based gene therapy strategy is ineffective in certain conditions. p73, a p53 homologue, could be a potential alternative gene therapy agent as it has been found to be an important determinant of chemosensitivity in cancer cells. Previously, we have reported the generation of a replication-deficient adenovirus expressing p73β (Ad-p73). In this study, we evaluated the therapeutic potential of Ad-p73 against a panel of cancer cells (n=12) of different tissue origin. Ad-p73 infected all the cell lines tested very efficiently resulting in several-fold increase in p73β levels, which is also functional as it activated the known target gene p21WAF1/CIP1. Infection with Ad-p73 resulted in potent cytotoxicity in all the cell lines tested. The mechanism of p73-induced cytotoxicity in these cell lines is found to be due to a combination of cell cycle arrest and induction of apoptosis. In addition, exogenous overexpression of p73 by Ad-p73 infection increased the chemosensitivity of cancer cells by many fold to commonly used drug adriamycin. Moreover, Ad-p73 is more efficient than Ad-p53 in enhancing the chemosensitivity of mutant p53 harboring cells. Furthermore, Ad-p73 infection did not induce apoptosis in human normal lung fibroblasts (HEL 299) and human immortalized keratinocytes (HaCaT). These results suggest that Ad-p73 is a potent cytotoxic agent specifically against cancer cells and could be developed as a cancer gene therapy agent either alone or in combination with chemotherapeutic agents
p73 -expressing recombinant adenovirus: a potential anticancer agent
Tumor suppressor p53-based gene therapy strategy is ineffective in certain conditions. p73, a p53 homologue, could be a potential alternative gene therapy agent as it has been found to be an important determinant of chemosensitivity in cancer cells. Previously, we have reported the generation of a replication-deficient adenovirus expressing p73 (Ad-p73). In this study, we evaluated the therapeutic potential of Ad-p73 against a panel of cancer cells (n=12) of different tissue origin. Ad-p73 infected all the cell lines tested very efficiently resulting in several-fold increase in p73 levels, which is also functional as it activated the known target gene p21^W^A^F^1^/^C^I^P^1. Infection with Ad-p73 resulted in potent cytotoxicity in all the cell lines tested. The mechanism of p73-induced cytotoxicity in these cell lines is found to be due to a combination of cell cycle arrest and induction of apoptosis. In addition, exogenous overexpression of p73 by Ad-p73 infection increased the chemosensitivity of cancer cells by many fold to commonly used drug adriamycin. Moreover, Ad-p73 is more efficient than Ad-p53 in enhancing the chemosensitivity of mutant p53 harboring cells. Furthermore, Ad-p73 infection did not induce apoptosis in human normal lung fibroblasts (HEL 299) and human immortalized keratinocytes (HaCaT). These results suggest that Ad-p73 is a potent cytotoxic agent specifically against cancer cells and could be developed as a cancer gene therapy agent either alone or in combination with chemotherapeutic agents
HDAC inhibitor valproic acid enhances tumor cell kill in adenovirus-HSVtk mediated suicide gene therapy in HNSCC xenograft mouse model
Safety, efficacy and enhanced transgene expression are the primary concerns while using any vector for gene therapy. One of the widely used vectors in clinical trials is adenovirus which provides a safe way to deliver the therapeutic gene. However, adenovirus has poor transduction efficiency in vivo since most tumor cells express low coxsackie and adenovirus receptors. Similarly transgene expression remains low, possibly because of the chromatization of adenoviral genome upon infection in eukaryotic cells, an effect mediated by histone deacetylases (HDACs). Using a recombinant adenovirus (Ad-HSVtk) carrying the herpes simplex thymidine kinase (HSVtk) and GFP genes we demonstrate that HDAC inhibitor valproic acid can bring about an increase in CAR expression on host cells and thereby enhanced Ad-HSVtk infectivity. It also resulted in an increase in transgene (HSVtk and GFP) expression. This, in turn, resulted in increased cell kill of HNSCC cells, following ganciclovir treatment in vitro as well as in vivo in a xenograft nude mouse model
HDAC inhibitor valproic acid enhances tumor cell kill in adenovirus-HSVtk mediated suicide gene therapy in HNSCC xenograft mouse model
HDAC inhibitor valproic acid enhances tumor cell kill in adenovirus-HSVtk mediated suicide gene therapy in HNSCC xenograft mouse model
Safety, efficacy and enhanced transgene expression are the primary concerns while using any vector for gene therapy. One of the widely used vectors in clinical. trials is adenovirus which provides a safe way to deliver the therapeutic gene. However, adenovirus has poor transduction efficiency in vivo since most tumor cells express low coxsackie and adenovirus receptors. Similarly transgene expression remains low, possibly because of the chromatization of adenoviral genome upon infection in eukaryotic cells, an effect mediated by histone deacetylases (HDACs). Using a recombinant adenovirus (Ad-HSVtk) carrying the herpes simplex thymidine kinase (HSVtk) and GFP genes we demonstrate that HDAC inhibitor valproic acid can bring about an increase in CAR expression on host cells and thereby enhanced Ad-HSVtk infectivity. It also resulted in an increase in transgene (HSVtk and GFP) expression. This, in turn, resulted in increased cell kill of HNSCC cells, following ganciclovir treatment in vitro as well as in vivo in a xenograft nude mouse model
MicroRNA-138 is a Prognostic Biomarker for Triple-Negative Breast Cancer and Promotes Tumorigenesis via TUSC2 repression
Breast cancer manifests as a spectrum of subtypes with distinct molecular signatures, and different responses to treatment. Of these subtypes, triple-negative breast cancer (TNBC) has the worst prognoses and limited therapeutic options. Here we report aberrant expression of microRNA-138 (miR-138) in TNBC. Increased miR-138 expression is highly specific to this subtype, correlates with poor prognosis in patients, and is functionally relevant to cancer progression. Our findings establish miR-138 as a specific diagnostic and prognostic biomarker for TNBC. OncomiR-138 is pro-survival; sequence-specific miR-138 inhibition blocks proliferation, promotes apoptosis and inhibits tumour growth in-vivo. miR-138 directly targets a suite of pro-apoptotic and tumour suppressive genes, including tumour suppressor candidate 2 (TUSC2). miR-138 silences TUSC2 by binding to a unique 5'-UTR target-site, which overlaps with the translation start-site of the transcript. Over-expression of TUSC2 mimics the phenotype of miR-138 knockdown and functional rescue experiments confirm that TUSC2 is a direct downstream target of miR-138. Our report of miR-138 as an oncogenic driver in TNBC, positions it as a viable target for oligonucleotide therapeutics and we envision the potential value of using antimiR-138 as an adjuvant therapy to alleviate this therapeutically intractable cancer
