41 research outputs found
Evidence for a Heterogeneous Distribution of Water in the Martian Interior
The abundance and distribution of H2O within the terrestrial planets, as well as its timing of delivery, is a topic of vital importance for understanding the chemical and physical evolution of planets and their potential for hosting habitable environments. Analysis of planetary materials from Mars, the Moon, and the eucrite parent body (i.e., asteroid 4Vesta) have confirmed the presence of H2O within their interiors. Moreover, H and N isotopic data from these planetary materials suggests H2O was delivered to the inner solar system very early from a common source, similar in composition to the carbonaceous chondrites. Despite the ubiquity of H2O in the inner Solar System, the only destination with any prospects for past or present habitable environments at this time, outside of the Earth, is Mars. Although the presence of H2O within the martian interior has been confirmed, very little is known regarding its abundance and distribution within the martian interior and how the martian water inventory has changed over time. By combining new analyses of martian apatites within a large number of martian meteorite types with previously published volatile data and recently determined mineral-melt partition coefficients for apatite, we report new insights into the abundance and distribution of volatiles in the martian crust and mantle. Using the subset of samples that did not exhibit crustal contamination, we determined that the enriched shergottite mantle source has 36-73 ppm H2O and the depleted shergottite mantle source has 14-23 ppm H2O. This result is consistent with other observed geochemical differences between enriched and depleted shergottites and supports the idea that there are at least two geochemically distinct reservoirs in the martian mantle. We also estimated the H2O content of the martian crust using the revised mantle H2O abundances and known crust-mantle distributions of incompatible lithophile elements. We determined that the bulk martian crust has approximately 1400 ppm H2O, which is likely distributed toward the martian surface. This crustal water abundance would equate to a global equivalent layer (GEL) of water at a depth of-229 m, which can account for at least some of the surface features on Mars attributed to flowing water and may be sufficient to support the past presence of a shallow sea on Mars' surface
Lifecycle scenario design for product end-of-life strategy
This paper proposes a method for supporting the design of product lifecycles. The main approach involves supporting designers in determining a lifecycle strategy by describing lifecycle scenarios at an early stage of lifecycle design. The authors define a representational scheme for the lifecycle scenario and outline a support system based on the idea of the Cognitive Design Process model allowing the designers to examine various possibilities of lifecycle strategy. A number of alternative scenarios are managed by the Truth Maintenance System implemented in this approach. Finally, in order to embody the strategy in the later stages, the system derives requirements for product and process design. This paper outlines the lifecycle scenario of a cellular phone as a case study, which indicates the system's suitability for computer-aided description of scenarios and its facilitation of lifecycle strategy development
Predictions of Binding of a Diverse Set of Ligands to Gelatinase-A by a Combination of Molecular Dynamics and Continuum Solvent Models
Mapping the Binding Site of a Large Set of Quinazoline Type EGF-R Inhibitors Using Molecular Field Analyses and Molecular Docking Studies
Co-innovation to increase community resilience: Influencing irrigation efficiency in the Waimakariri Irrigation Scheme
The implications of a co-innovation project, which included elements of biophysical and social science are examined, particularly as they relate to conceptualisation(s) of community resilience. The framework of community resilience is used to explain how a farming region in New Zealand has increased their social, human and environmental capital, despite a recent decline in economic capital as a result of a reduction in the global value of milk powder. The social learning, alteration of the project, and changes in decision making as a result of the project are reported in an example of positive outcomes from effectively facilitated transdisciplinary work
