314 research outputs found
Regulation of eosinophilia and allergic airway inflammation by the glycan-binding protein galectin-1
Galectin-1 (Gal-1), a glycan-binding protein with broad antiinflammatory activities, functions as a proresolving mediator in autoimmune and chronic inflammatory disorders. However, its role in allergic airway inflammation has not yet been elucidated. We evaluated the effects of Gal-1 on eosinophil function and its role in a mouse model of allergic asthma. Allergen exposure resulted in airway recruitment of Gal-1-expressing inflammatory cells, including eosinophils, as well as increased Gal-1 in extracellular spaces in the lungs. In vitro, extracellular Gal-1 exerted divergent effects on eosinophils that were N-glycan- And dose-dependent. At concentrations ≤0.25 μM, Gal-1 increased eosinophil adhesion to vascular cell adhesion molecule-1, caused redistribution of integrin CD49d to the periphery and cell clustering, but inhibited ERK(1/2) activation and eotaxin-1-induced migration. Exposure to concentrations ≥1 μM resulted in ERK(1/2)- dependent apoptosis and disruption of the F- Actin cytoskeleton. At lower concentrations, Gal-1 did not alter expression of adhesion molecules (CD49d, CD18, CD11a, CD11b, L-selectin) or of the chemokine receptor CCR3, but decreased CD49d and CCR3 was observed in eosinophils treated with higher concentrations of this lectin. In vivo, allergen-challenged Gal-1-deficient mice exhibited increased recruitment of eosinophils and CD3+ T lymphocytes in the airways as well as elevated peripheral blood and bone marrow eosinophils relative to corresponding WT mice. Further, these mice had an increased propensity to develop airway hyperresponsiveness and displayed significantly elevated levels of TNF-α in lung tissue. This study suggests that Gal-1 can limit eosinophil recruitment to allergic airways and suppresses airway inflammation by inhibiting cell migration and promoting eosinophil apoptosis.Fil: Ge, Xiao Na. University of Minnesota; Estados UnidosFil: Ha, Sung Gil. University of Minnesota; Estados UnidosFil: Greenberg, Yana G.. University of Minnesota; Estados UnidosFil: Rao, Amrita. University of Minnesota; Estados UnidosFil: Bastan, Idil. University of Minnesota; Estados UnidosFil: Blidner, Ada Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Rao, Savita P.. University of Minnesota; Estados UnidosFil: Rabinovich, Gabriel Adrián. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Sriramarao, P.. University of Minnesota; Estados Unido
Extra-cellular matrix proteins induce matrix metalloproteinase-1 (MMP-1) activity and increase airway smooth muscle contraction in asthma
Airway remodelling describes the histopathological changes leading to fixed airway obstruction in patients with asthma and includes extra-cellular matrix (ECM) deposition. Matrix metalloproteinase-1 (MMP-1) is present in remodelled airways but its relationship with ECM proteins and the resulting functional consequences are unknown. We used airway smooth muscle cells (ASM) and bronchial biopsies from control donors and patients with asthma to examine the regulation of MMP-1 by ECM in ASM cells and the effect of MMP-1 on ASM contraction. Collagen-I and tenascin-C induced MMP-1 protein expression, which for tenascin-C, was greater in asthma derived ASM cells. Tenascin-C induced MMP-1 expression was dependent on ERK1/2, JNK and p38 MAPK activation and attenuated by function blocking antibodies against the β1 and β3 integrin subunits. Tenascin-C and MMP-1 were not expressed in normal airways but co-localised in the ASM bundles and reticular basement membrane of patients with asthma. Further, ECM from asthma derived ASM cells stimulated MMP-1 expression to a greater degree than ECM from normal ASM. Bradykinin induced contraction of ASM cells seeded in 3D collagen gels was reduced by the MMP inhibitor ilomastat and by siRNA knockdown of MMP-1. In summary, the induction of MMP-1 in ASM cells by tenascin-C occurs in part via integrin mediated MAPK signalling. MMP-1 and tenascin-C are co-localised in the smooth muscle bundles of patients with asthma where this interaction may contribute to enhanced airway contraction. Our findings suggest that ECM changes in airway remodelling via MMP-1 could contribute to an environment promoting greater airway narrowing in response to broncho-constrictor stimuli and worsening asthma symptoms
Recommended from our members
Effect Of Dual sEH/COX-2 Inhibition on Allergen-Induced Airway Inflammation
Arachidonic acid metabolites resulting from the cyclooxygenase (COX), lipoxygenase, and cytochrome P450 oxidase enzymatic pathways play pro- and anti-inflammatory roles in allergic airway inflammation (AAI) and asthma. Expression of COX-2 and soluble epoxide hydrolase (sEH) are elevated in allergic airways and their enzymatic products (e.g., prostaglandins and diols of epoxyeicosatrienoic acids, respectively) have been shown to participate in the pathogenesis of AAI. Here, we evaluated the outcome of inhibiting the COX-2 and sEH enzymatic pathways with a novel dual inhibitor, PTUPB, in A. alternata-induced AAI. Allergen-challenged mice were administered with 10 or 30 mg/kg of PTUPB, celecoxib (selective COX-2 inhibitor), t-TUCB (selective sEH inhibitor) or vehicle daily by gavage and evaluated for various features of AAI. PTUPB and t-TUCB at 30 mg/kg, but not celecoxib, inhibited eosinophilic infiltration and significantly increased levels of anti-inflammatory EETs in the lung tissue of allergen-challenged mice. t-TUCB significantly inhibited allergen-induced IL-4 and IL-13, while a less pronounced reduction was noted with PTUPB and celecoxib. Additionally, t-TUCB markedly inhibited eotaxin-2, an eosinophil-specific chemokine, which was only marginally reduced by PTUPB and remained elevated in celecoxib-treated mice. PTUPB or t-TUCB administration reversed allergen-induced reduction in levels of various lipid mediators in the lungs, with only a minimal effect noted with celecoxib. Despite the anti-inflammatory effects, PTUPB or t-TUCB did not reduce allergen-induced airway hyperresponsiveness (AHR). However, development of structural changes in the allergic airways, such as mucus hypersecretion and smooth muscle hypertrophy, was significantly inhibited by both inhibitors. Celecoxib, on the other hand, inhibited only airway smooth muscle hypertrophy, but not mucus hypersecretion. In conclusion, dual inhibition of COX-2 and sEH offers no additional advantage relative to sEH inhibition alone in attenuating various features associated with A. alternata-induced AAI, while COX-2 inhibition exerts only moderate or no effect on several of these features. Dual sEH/COX-2 inhibition may be useful in treating conditions where eosinophilic inflammation co-exists with pain-associated inflammation
Assessment of eosinophils in gastrointestinal inflammatory disease of dogs
BackgroundAccurate identification of eosinophils in the gastrointestinal (GI) tract of dogs with eosinophilic GI disease (EGID) by histological evaluation is challenging. The currently used hematoxylin and eosin (H&E) staining method detects intact eosinophils but does not detect degranulated eosinophils, thus potentially underrepresenting the number of infiltrating eosinophils.ObjectiveTo develop a more sensitive method for identifying and quantifying both intact and degranulated eosinophils to diagnose EGID more accurately.MethodsEndoscopically obtained paraffin‐embedded intestinal biopsy specimens from dogs with GI signs were examined. The study groups were dogs with eosinophilic enteritis (EE), lymphoplasmacytic and mixed enteritis, and control dogs with GI signs but no histologic changes on tissue sections. Consecutive sections were immunolabeled with monoclonal antibodies (mAbs) against the eosinophil granule protein eosinophil peroxidase (Epx) and stained by H&E, respectively. The number of eosinophils was manually quantified and classified as intact or degranulated.ResultsThe number of intact eosinophils detected in Epx mAb‐labeled duodenal sections was significantly higher compared with that in H&E‐stained sections, with a similar relationship noted in the colon and stomach. The Epx mAb allowed the unique assessment of eosinophil degranulation. The number of intact and degranulated eosinophils was significantly higher in duodenal lamina propria of the EE and mixed group compared to the control group.ConclusionImmunohistochemical detection of Epx provides a more precise method to detect GI tract eosinophils compared to H&E staining and could be used as an alternative and reliable diagnostic tool for assessment of biopsy tissues from dogs with EGID
Textile industry manufacturing by-products induce human melanoma cell proliferation via ERK1/2 activation
OBJECTIVES:
Textiles used to make clothing can represent a source, often ignored, of chemicals potentially noxious to both skin and the whole organism. Among the most frequently produced potentially noxious chemical manufacturing by-products are formaldehyde (FA), nickel (Ni) and hexavalent chromium (Cr); they are of potential clinical interest as all are known to be carcinogenic to humans and to be potent skin sensitizers. The aim of this study was to investigate, in vitro, effects of these potentially dangerous compounds on two different melanoma cell lines. In particular, attention was focused on A375P, a poorly metastatic and low invasive cell line and SK-MEL-28, a highly metastatic cell line.
MATERIALS AND METHODS:
Effects of these compounds was evaluated on A375P and SK-MEL-28 cells. FA (1-5
7 10(-5) m), NiSO4 (10(-6) -10(-3) m), K2 Cr2 O7 (10(-7) -10(-6) m) effects on cell proliferation were evaluated by cell counting, while ERK pathway involvement was evaluated by Western blot analysis.
RESULTS:
Low concentrations of the chemicals, covering a range that corresponds to commonly accepted limits in textile production, induced a significant increase in cell proliferation concomitant with transient activation of phosphorylated ERK expression.
CONCLUSIONS:
Data obtained suggest that increasing attention must be focused on these by-products' potentially harmful effects in chemical manufacturing of clothes and accessories, that remain for long periods of time, in contact with human skin
Presentation of Integrins on Leukocyte Microvilli: A Role for the Extracellular Domain in Determining Membrane Localization
Adhesion of blood leukocytes to the endothelium involves multiple steps including initial attachment (tethering), rolling, and firm arrest. Presentation of adhesion molecules on leukocyte microvilli can substantially enhance tethering. Localization of L-selectin to microvilli and of CD44 to the planar cell body have been shown to depend upon their transmembrane and cytoplasmic domains. We investigated the role of leukocyte integrin transmembrane and cytoplasmic domains in initiating adhesion under flow and in microvillous localization. Integrins α4β7, αLβ2, and αMβ2 were heterologously expressed in K562 cells. α4β7 initiated adhesion under flow and localized to microvilli, whereas β2 integrins did not initiate adhesion and localized to the cell body. Chimeric integrins were produced by replacing the α4β7 cytoplasmic and/or transmembrane domains with the homologous domains of αLβ2 or αMβ2. Unexpectedly, these chimeras efficiently mediated adhesion to the α4β7 ligand mucosal addressin cell adhesion molecule–1 under flow and localized to microvilli. Therefore, differences between the transmembrane and cytoplasmic domains of α4 and β2 integrins do not account for differences in ability to support attachment under flow or in membrane localization. Integrins α4β1, α5β1, α6Aβ1, αvβ3, and αEβ7 also localized to microvilli. Transmembrane proteins known or suspected to associate with extracellular domains of microvillous integrins, including tetraspans and CD47, were concentrated on microvilli as well. These findings suggest that interactions between the extracellular domains of integrins and associated proteins could direct the assembly of multimolecular complexes on leukocyte microvilli
Tenascin-C Enhances Pancreatic Cancer Cell Growth and Motility and Affects Cell Adhesion through Activation of the Integrin Pathway
Background: Pancreatic cancer (PDAC) is characterized by an abundant fibrous tissue rich in Tenascin-C (TNC), a large ECM glycoprotein mainly synthesized by pancreatic stellate cells (PSCs). In human pancreatic tissues, TNC expression increases in the progression from low-grade precursor lesions to invasive cancer. Aim of this study was the functional characterization of the effects of TNC on biologic relevant properties of pancreatic cancer cells. Methods: Proliferation, migration and adhesion assays were performed on pancreatic cancer cell lines treated with TNC or grown on a TNC-rich matrix. Stable transfectants expressing the large TNC splice variant were generated to test the effects of endogenous TNC. TNC-dependent integrin signaling was investigated by immunoblotting, immunofluorescence and pharmacological inhibition. Results: Endogenous TNC promoted pancreatic cancer cell growth and migration. A TNC-rich matrix also enhanced migration as well as the adhesion to the uncoated growth surface of poorly differentiated cell lines. In contrast, adhesion to fibronectin was significantly decreased in the presence of TNC. The effects of TNC on cell adhesion were paralleled by changes in the activation state of paxillin and Akt. Conclusion: TNC affects proliferation, migration and adhesion of poorly differentiated pancreatic cancer cell lines and migh
Harmful and beneficial aspects of Parthenium hysterophorus: an update
Parthenium hysterophorus is a noxious weed in America, Asia, Africa and Australia. This weed is considered to be a cause of allergic respiratory problems, contact dermatitis, mutagenicity in human and livestock. Crop production is drastically reduced owing to its allelopathy. Also aggressive dominance of this weed threatens biodiversity. Eradication of P. hysterophorus by burning, chemical herbicides, eucalyptus oil and biological control by leaf-feeding beetle, stem-galling moth, stem-boring weevil and fungi have been carried out with variable degrees of success. Recently many innovative uses of this hitherto notorious plant have been discovered. Parthenium hysterophorus confers many health benefits, viz remedy for skin inflammation, rheumatic pain, diarrhoea, urinary tract infections, dysentery, malaria and neuralgia. Its prospect as nano-medicine is being carried out with some preliminary success so far. Removal of heavy metals and dye from the environment, eradication of aquatic weeds, use as substrate for commercial enzyme production, additives in cattle manure for biogas production, as biopesticide, as green manure and compost are to name a few of some other potentials. The active compounds responsible for hazardous properties have been summarized. The aim of this review article is to explore the problem P. hysterophorus poses as a weed, the effective control measures that can be implemented as well as to unravel the latent beneficial prospects of this weed
Cell-Adhesive Responses to Tenascin-C Splice Variants Involve Formation of Fascin Microspikes
- …
