342 research outputs found

    Autoencoding Variational Inference for Topic Models

    Get PDF
    Topic models are one of the most popular methods for learning representations of text, but a major challenge is that any change to the topic model requires mathematically deriving a new inference algorithm. A promising approach to address this problem is autoencoding variational Bayes (AEVB), but it has proven difficult to apply to topic models in practice. We present what is to our knowledge the first effective AEVB based inference method for latent Dirichlet allocation (LDA), which we call Autoencoded Variational Inference For Topic Model (AVITM). This model tackles the problems caused for AEVB by the Dirichlet prior and by component collapsing. We find that AVITM matches traditional methods in accuracy with much better inference time. Indeed, because of the inference network, we find that it is unnecessary to pay the computational cost of running variational optimization on test data. Because AVITM is black box, it is readily applied to new topic models. As a dramatic illustration of this, we present a new topic model called ProdLDA, that replaces the mixture model in LDA with a product of experts. By changing only one line of code from LDA, we find that ProdLDA yields much more interpretable topics, even if LDA is trained via collapsed Gibbs sampling

    Autoencoding Variational Inference for Topic Models

    Get PDF
    Topic models are one of the most popular methods for learning representations of text, but a major challenge is that any change to the topic model requires mathematically deriving a new inference algorithm. A promising approach to address this problem is autoencoding variational Bayes (AEVB), but it has proven diffi- cult to apply to topic models in practice. We present what is to our knowledge the first effective AEVB based inference method for latent Dirichlet allocation (LDA), which we call Autoencoded Variational Inference For Topic Model (AVITM). This model tackles the problems caused for AEVB by the Dirichlet prior and by component collapsing. We find that AVITM matches traditional methods in accuracy with much better inference time. Indeed, because of the inference network, we find that it is unnecessary to pay the computational cost of running variational optimization on test data. Because AVITM is black box, it is readily applied to new topic models. As a dramatic illustration of this, we present a new topic model called ProdLDA, that replaces the mixture model in LDA with a product of experts. By changing only one line of code from LDA, we find that ProdLDA yields much more interpretable topics, even if LDA is trained via collapsed Gibbs sampling

    Monitoring of Greenhouse gases with a Sensor Network

    Get PDF
    This paper introduces a concept the design and implementation of a sensor networks for greenhouse gases monitoring. The sensor networks are deployed and monitored remotely on lifetime systems in a commercial, industrial area and smart cities greenhouse that produces lettuces in a tropical environment. The key issues are low-noise power supply, noise floor of sensor, high sampling rate, and the relationship among displacement, frequency, and acceleration. The sensor nodes were developed with the use of a micro-controller and sensor components . Real time data enabled the operators to monitor the operating parameters of the greenhouse and also to respond immediately to any changes in the controlled parameters

    Deep generative modelling for amortised variational inference

    Get PDF
    Probabilistic and statistical modelling are the fundamental frameworks that underlie a large proportion of the modern machine learning (ML) techniques. These frameworks allow for the practitioners to develop tailor-made models for their problems that may include their expert knowledge and can learn from data. Learning from data in the Bayesian framework is referred as inference. In general, model-specific inference methods are hard to derive as they require high level of mathematical and statistical dexterity on the practitioner’s part. As a result, there is a large industry of researchers in ML and statistics that work towards developing automatic methods of inference (Carpenter et al., 2017; Tran et al., 2016; Kucukelbir et al., 2016; Ge et al., 2018; Salvatier et al., 2016; Uber, 2017; Lintusaari et al., 2018). These methods are generally model agnostic and are therefore called black-box inference. Recent work has shown that use of deep learning techniques (Rezende and Mohamed, 2015b; Kingma et al., 2016; Srivastava and Sutton, 2017; Mescheder et al., 2017a) within the framework of variational inference (Jordan et al., 1999) not only allows for automatic and accurate inference but does so in a drastically efficient way. The added efficiency comes from the amortisation of the learning cost by using deep neural networks to leverage the smoothness between data points and their posterior parameters. The field of deep learning based amortised variational inference is relatively new and therefore has numerous challenges and issues to be tackled before it can be established as a standard method of inference. To this end, this thesis presents four pieces of original work in the domain of automatic amortised variational inference in statistical models. We first introduce two sets of techniques for amortising variational inference in Bayesian generative models such as the Latent Dirichlet Allocation (Blei et al., 2003) and Pachinko Allocation Machine (Li and McCallum, 2006). These techniques use deep neural networks and stochastic gradient based first order optimisers for inference and can be generically applied for inference in a large number of Bayesian generative models. Similarly, we also introduce a novel variational framework for implicit generative models of data, called VEEGAN. This framework allows for doing inference in statistical models where unlike the Bayesian generative models, a prescribed likelihood function is not available. It makes use of a discriminator based density ratio estimator (Sugiyama et al., 2012) to deal with the intractability of the likelihood function. Implicit generative models such as the generative adversarial networks (Goodfellow et al., 2014) suffer from learning issues like mode collapse (Srivastava et al., 2017) and training instability (Arjovsky et al., 2017). We tackle the mode collapse in GANs using VEEGAN and propose a new training method for implicit generative models, RB-MMDnet based on an alternative density ratio estimation which provide for stable training and optimisation in implicit models. Our results and analysis clearly show that the application of deep generative modelling in variational inference is a promising direction for improving the state of the black-box inference methods. Not only do these methods perform better than the traditional inference methods for the models in question but they do so in a fraction of the time compared to the traditional methods by utilising the latest in the GPU technology

    Amortized Inference for Latent Feature Models Using Variational Russian Roulette

    Get PDF
    The Indian buffet process (IBP) provides a principled prior distribution for inferring the number of latent features in a dataset. Traditionally, inference for these models is slow when applied to large datasets, which motivates the use of amortized neural inference methods. However, previous works on variational inference for these models require the use of a truncated approximation, in which the maximum number of features is predetermined. To address this problem, we present a new dynamic variational posterior by introducing auxiliary variables to the stick-breaking construction of IBP. We describe how to estimate the evidence lower bound, which contains summations of infinite terms, using Russian roulette sampling
    corecore