2,740 research outputs found
High-resolution X-ray spectroscopy reveals the special nature of Wolf-Rayet star winds
We present the first high-resolution X-ray spectrum of a putatively single
Wolf-Rayet star. 400 ks observations of WR 6 by the XMM-Newton-telescope
resulted in a superb quality high-resolution X-ray spectrum. Spectral analysis
reveals that the X-rays originate far out in the stellar wind, more than 30
stellar radii from the photosphere, and thus outside the wind acceleration zone
where the line-driving instability could create shocks. The X-ray emitting
plasma reaches temperatures up to 50\,MK, and is embedded within the
un-shocked, "cool" stellar wind as revealed by characteristic spectral
signatures. We detect a fluorescent Fe line at approx 6.4 keV. The presence of
fluorescence is consistent with a two-component medium, where the cool wind is
permeated with the hot X-ray emitting plasma. The wind must have a very porous
structure to allow the observed amount of X-rays to escape. We find that
neither the line-driving instability nor any alternative binary scenario can
explain the data. We suggest a scenario where X-rays are produced when the fast
wind rams into slow "sticky clumps" that resist acceleration. Our new data show
that the X-rays in single WR-star are generated by some special mechanism
different from the one operating in the O-star winds.Comment: ApJL, Figure 3 is update
New Constraints on the Origin of the Short-Term Cyclical Variability of the Wolf-Rayet Star WR 46
The Wolf-Rayet star WR 46 is known to exhibit a very complex variability
pattern on relatively short time scales of a few hours. Periodic but
intermittent radial velocity shifts of optical lines as well as multiple
photometric periods have been found in the past. Non-radial pulsations, rapid
rotational modulation or the presence of a putative low-mass companion have
been proposed to explain the short-term behaviour. In an effort to unveil its
true nature, we observed WR 46 with FUSE (Far Ultraviolet Spectroscopic
Explorer) over several short-term variability cycles. We found significant
variations on a time scale of ~8 hours in the far-ultraviolet (FUV) continuum,
in the blue edge of the absorption trough of the OVI {\lambda}{\lambda}1032,
1038 doublet P Cygni profile and in the SVI {\lambda}{\lambda}933, 944 P Cygni
absorption profile. We complemented these observations with X-ray and UV
light-curves and an X-ray spectrum from archival XMM-Newton (X-ray Multi-Mirror
Mission - Newton Space Telescope) data. The X-ray and UV light-curves show
variations on a time scale similar to the variability found in the FUV. We
discuss our results in the context of the different scenarios suggested to
explain the short-term variability of this object and reiterate that non-radial
pulsations is the most likely to occur.Comment: 36 pages, 11 figures. Accepted for publication in Ap
Recommended from our members
Non-Maxwellian ion velocity distributions observed using EISCAT
Recent observations from the EISCAT incoherent scatter radar have revealed bursts of poleward ion flow in the dayside auroral ionosphere which are consistent with the ionospheric signature of flux transfer events at the magnetopause. These bursts frequently contain ion drifts which exceed the neutral thermal speed and, because the neutral thermospheric wind is incapable of responding sufficiently rapidly, toroidal, non-Maxwellian ion velocity distributions are expected. The EISCAT observations are made with high time resolution (15 seconds) and at a large angle to the geomagnetic field (73.5°), allowing the non-Maxwellian nature of the distribution to be observed remotely for the first time. The observed features are also strongly suggestive of a toroidal distribution: characteristic spectral shape, increased scattered power (both consistent with reduced Landau damping and enhanced electric field fluctuations) and excessively high line-of-sight ion temperatures deduced if a Maxwellian distribution is assumed. These remote sensing observations allow the evolution of the distributions to be observed. They are found to be non-Maxwellian whenever the ion drift exceeds the neutral thermal speed, indicating that such distributions can exist over the time scale of the flow burst events (several minutes)
A Spectroscopic Survey of WNL Stars in the LMC: General Properties and Binary Status
We report the results of an intense, spectroscopic survey of all 41
late-type, nitrogen-rich Wolf-Rayet (WR) stars in the Large Magellanic Cloud
(LMC) observable with ground-based telescopes. This survey concludes the
decade-long effort of the Montr\'eal Massive Star Group to monitor every known
WR star in the Magellanic Clouds except for the 6 crowded WNL stars in R136,
which will be discussed elsewhere. The focus of our survey was to monitor the
so-called WNL stars for radial-velocity (RV) variability in order to identify
the short- to intermediate-period (P \la 200 days) binaries among them. Our
results are in line with results of previous studies of other WR subtypes, and
show that the binary frequency among LMC WNL stars is statistically consistent
with that of WNL stars in the Milky Way. We have identified four previously
unknown binaries, bringing the total number of known WNL binaries in the LMC to
nine. Since it is very likely that none but one of the binaries are classical,
helium-burning WNL stars, but rather superluminous, hence extremely massive,
hydrogen-burning objects, our study has dramatically increased the number of
known binaries harbouring such objects, and thus paved the way to determine
their masses through model-independent, Keplerian orbits. It is expected that
some of the stars in our binaries will be among the most massive known. With
the binary status of each WR star now known, we also studied the photometric
and X-ray properties of our program stars using archival MACHO photometry as
well as Chandra and ROSAT data. We find that one of our presumably single WNL
stars is among the X-ray brightest WR sources known. We also identify a binary
candidate from its RV variability and X-ray luminosity which harbours the most
luminous WR star known in the Local Group.Comment: 25 pages, 11 figures; accepted for MNRA
Gac two-component system in Pseudomonas syringae pv. tabaci is required for virulence but not for hypersensitive reaction
Pseudomonas syringae pv. tabaci 6605 causes wildfire disease on host tobacco plants. To investigate the regulatory mechanism of the expression of virulence, Gac two-Component system-defective mutants, Delta gacA and Delta gacS, and a double mutant, Delta gacA Delta gacS, were generated. These mutants produced smaller amounts of N-acyl homoserine lactones required for quorum sensing, had lost swarming motility, and had reduced expression of virulence-related hrp genes and the algT gene required for exopolysaccharide production. The ability of the mutants to cause disease symptoms in their host tobacco plant was remarkably reduced, while they retained the ability to induce hypersensitive reaction (HR) in the nonhost plants. These results indicated that the Gac two-component system of P. syringae pv. tabaci 6605 is indispensable for virulence on the host plant, but not for HR induction in the nonhost plants.</p
Overexpression of Mcl-1 exacerbates lymphocyte accumulation and autoimmune kidney disease in lpr mice
Cell death by apoptosis has a critical role during embryonic development and in maintaining tissue homeostasis. In mammals,
there are two converging apoptosis pathways: the ‘extrinsic’ pathway, which is triggered by engagement of cell surface ‘death
receptors’ such as Fas/APO-1; and the ‘intrinsic’ pathway, which is triggered by diverse cellular stresses, and is regulated by prosurvival
and pro-apoptotic members of the Bcl-2 family of proteins. Pro-survival Mcl-1, which can block activation of the proapoptotic
proteins, Bax and Bak, appears critical for the survival and maintenance of multiple haemopoietic cell types. To
investigate the impact on haemopoiesis of simultaneously inhibiting both apoptosis pathways, we introduced the vavP-Mcl-1
transgene, which causes overexpression of Mcl-1 protein in all haemopoietic lineages, into Faslpr/lpr mice, which lack functional
Fas and are prone to autoimmunity. The combined mutations had a modest impact on myelopoiesis, primarily an increase in the
macrophage/monocyte population in Mcl-1tg/lpr mice compared with lpr or Mcl-1tg mice. The impact on lymphopoiesis was
striking, with a marked elevation in all major lymphoid subsets, including the non-conventional double-negative (DN) T cells
(TCRβ+
CD4–
CD8–
B220+
) characteristic of Faslpr/lpr mice. Of note, the onset of autoimmunity was markedly accelerated in Mcl-1tg/lpr
mice compared with lpr mice, and this was preceded by an increase in immunoglobulin (Ig)-producing cells and circulating
autoantibodies. This degree of impact was surprising, given the relatively mild phenotype conferred by the vavP-Mcl-1 transgene
by itself: a two- to threefold elevation of peripheral B and T cells, no significant increase in the non-conventional DN T-cell
population and no autoimmune disease. Comparison of the phenotype with that of other susceptible mice suggests that the
development of autoimmune disease in Mcl-1tg/lpr mice may be influenced not only by Ig-producing cells but also other
haemopoietic cell types
Quantitative analysis of WC stars: Constraints on neon abundances from ISO/SWS spectroscopy
Neon abundances are derived in four Galactic WC stars -- gamma Vel (WR11,
WC8+O7.5III), HD156385 (WR90, WC7), HD192103 (WR135, WC8), and WR146 (WC5+O8) -
using mid-infrared fine structure lines obtained with ISO/SWS. Stellar
parameters for each star are derived using a non-LTE model atmospheric code
(Hillier & Miller 1998) together with ultraviolet (IUE), optical (INT, AAT) and
infrared (UKIRT, ISO) spectroscopy. In the case of gamma Vel, we adopt results
from De Marco et al. (2000), who followed an identical approach.
ISO/SWS datasets reveal the [NeIII] 15.5um line in each of our targets, while
[NeII] 12.8um, [SIV] 10.5um and [SIII] 18.7um are observed solely in gamma Vel.
Using a method updated from Barlow et al. (1988) to account for clumped winds,
we derive Ne/He=3-4x10^-3 by number, plus S/He=6x10^-5 for gamma Vel. Neon is
highly enriched, such that Ne/S in gamma Vel is eight times higher than cosmic
values. However, observed Ne/He ratios are a factor of two times lower than
predictions of current evolutionary models of massive stars. An imprecise
mass-loss and distance were responsible for the much greater discrepancy in
neon content identified by Barlow et al.
Our sample of WC5--8 stars span a narrow range in T* (=55--71kK), with no
trend towards higher temperature at earlier spectral type, supporting earlier
results for a larger sample by Koesterke & Hamann (1995). Stellar luminosities
range from 100,000 to 500,000 Lo, while 10^-5.1 < Mdot/(Mo/yr) < 10^-4.5,
adopting clumped winds, in which volume filling factors are 10%. In all cases,
wind performance numbers are less than 10, significantly lower than recent
estimates. Carbon abundances span 0.08 < C/He < 0.25 by number, while oxygen
abundances remain poorly constrained.Comment: 16 pages,7 figures accepted for MNRA
X-ray Emission from Nitrogen-Type Wolf-Rayet Stars
We summarize new X-ray detections of four nitrogen-type Wolf-Rayet (WR) stars
obtained in a limited survey aimed at establishing the X-ray properties of WN
stars across their full range of spectral subtypes. None of the detected stars
is so far known to be a close binary. We report Chandra detections of WR 2
(WN2), WR 18 (WN4), and WR 134 (WN6), and an XMM-Newton detection of WR79a
(WN9ha). These observations clearly demonstrate that both WNE and WNL stars are
X-ray sources. We also discuss Chandra archive detections of the WN6h stars WR
20b, WR 24, and WR 136 and ROSAT non-detections of WR 16 (WN8h) and WR 78
(WN7h). The X-ray spectra of all WN detections show prominent emission lines
and an admixture of cool (kT 2 keV) plasma. The hotter
plasma is not predicted by radiative wind shock models and other as yet
unidentified mechanisms are at work. Most stars show X-ray absorption in excess
of that expected from visual extinction (Av), likely due to their strong winds
or cold circumstellar gas. Existing data suggest a falloff in X-ray luminosity
toward later WN7-9 subtypes, which have higher Lbol but slower, denser winds
than WN2-6 stars. This provides a clue that wind properties may be a more
crucial factor in determining emergent X-ray emission levels than bolometric
luminosity.Comment: 42 pages, 5 tables, 10 figure
- …
