2,740 research outputs found

    High-resolution X-ray spectroscopy reveals the special nature of Wolf-Rayet star winds

    Full text link
    We present the first high-resolution X-ray spectrum of a putatively single Wolf-Rayet star. 400 ks observations of WR 6 by the XMM-Newton-telescope resulted in a superb quality high-resolution X-ray spectrum. Spectral analysis reveals that the X-rays originate far out in the stellar wind, more than 30 stellar radii from the photosphere, and thus outside the wind acceleration zone where the line-driving instability could create shocks. The X-ray emitting plasma reaches temperatures up to 50\,MK, and is embedded within the un-shocked, "cool" stellar wind as revealed by characteristic spectral signatures. We detect a fluorescent Fe line at approx 6.4 keV. The presence of fluorescence is consistent with a two-component medium, where the cool wind is permeated with the hot X-ray emitting plasma. The wind must have a very porous structure to allow the observed amount of X-rays to escape. We find that neither the line-driving instability nor any alternative binary scenario can explain the data. We suggest a scenario where X-rays are produced when the fast wind rams into slow "sticky clumps" that resist acceleration. Our new data show that the X-rays in single WR-star are generated by some special mechanism different from the one operating in the O-star winds.Comment: ApJL, Figure 3 is update

    New Constraints on the Origin of the Short-Term Cyclical Variability of the Wolf-Rayet Star WR 46

    Full text link
    The Wolf-Rayet star WR 46 is known to exhibit a very complex variability pattern on relatively short time scales of a few hours. Periodic but intermittent radial velocity shifts of optical lines as well as multiple photometric periods have been found in the past. Non-radial pulsations, rapid rotational modulation or the presence of a putative low-mass companion have been proposed to explain the short-term behaviour. In an effort to unveil its true nature, we observed WR 46 with FUSE (Far Ultraviolet Spectroscopic Explorer) over several short-term variability cycles. We found significant variations on a time scale of ~8 hours in the far-ultraviolet (FUV) continuum, in the blue edge of the absorption trough of the OVI {\lambda}{\lambda}1032, 1038 doublet P Cygni profile and in the SVI {\lambda}{\lambda}933, 944 P Cygni absorption profile. We complemented these observations with X-ray and UV light-curves and an X-ray spectrum from archival XMM-Newton (X-ray Multi-Mirror Mission - Newton Space Telescope) data. The X-ray and UV light-curves show variations on a time scale similar to the variability found in the FUV. We discuss our results in the context of the different scenarios suggested to explain the short-term variability of this object and reiterate that non-radial pulsations is the most likely to occur.Comment: 36 pages, 11 figures. Accepted for publication in Ap

    A Spectroscopic Survey of WNL Stars in the LMC: General Properties and Binary Status

    Full text link
    We report the results of an intense, spectroscopic survey of all 41 late-type, nitrogen-rich Wolf-Rayet (WR) stars in the Large Magellanic Cloud (LMC) observable with ground-based telescopes. This survey concludes the decade-long effort of the Montr\'eal Massive Star Group to monitor every known WR star in the Magellanic Clouds except for the 6 crowded WNL stars in R136, which will be discussed elsewhere. The focus of our survey was to monitor the so-called WNL stars for radial-velocity (RV) variability in order to identify the short- to intermediate-period (P \la 200 days) binaries among them. Our results are in line with results of previous studies of other WR subtypes, and show that the binary frequency among LMC WNL stars is statistically consistent with that of WNL stars in the Milky Way. We have identified four previously unknown binaries, bringing the total number of known WNL binaries in the LMC to nine. Since it is very likely that none but one of the binaries are classical, helium-burning WNL stars, but rather superluminous, hence extremely massive, hydrogen-burning objects, our study has dramatically increased the number of known binaries harbouring such objects, and thus paved the way to determine their masses through model-independent, Keplerian orbits. It is expected that some of the stars in our binaries will be among the most massive known. With the binary status of each WR star now known, we also studied the photometric and X-ray properties of our program stars using archival MACHO photometry as well as Chandra and ROSAT data. We find that one of our presumably single WNL stars is among the X-ray brightest WR sources known. We also identify a binary candidate from its RV variability and X-ray luminosity which harbours the most luminous WR star known in the Local Group.Comment: 25 pages, 11 figures; accepted for MNRA

    Gac two-component system in Pseudomonas syringae pv. tabaci is required for virulence but not for hypersensitive reaction

    Get PDF
    Pseudomonas syringae pv. tabaci 6605 causes wildfire disease on host tobacco plants. To investigate the regulatory mechanism of the expression of virulence, Gac two-Component system-defective mutants, Delta gacA and Delta gacS, and a double mutant, Delta gacA Delta gacS, were generated. These mutants produced smaller amounts of N-acyl homoserine lactones required for quorum sensing, had lost swarming motility, and had reduced expression of virulence-related hrp genes and the algT gene required for exopolysaccharide production. The ability of the mutants to cause disease symptoms in their host tobacco plant was remarkably reduced, while they retained the ability to induce hypersensitive reaction (HR) in the nonhost plants. These results indicated that the Gac two-component system of P. syringae pv. tabaci 6605 is indispensable for virulence on the host plant, but not for HR induction in the nonhost plants.</p

    Overexpression of Mcl-1 exacerbates lymphocyte accumulation and autoimmune kidney disease in lpr mice

    Get PDF
    Cell death by apoptosis has a critical role during embryonic development and in maintaining tissue homeostasis. In mammals, there are two converging apoptosis pathways: the ‘extrinsic’ pathway, which is triggered by engagement of cell surface ‘death receptors’ such as Fas/APO-1; and the ‘intrinsic’ pathway, which is triggered by diverse cellular stresses, and is regulated by prosurvival and pro-apoptotic members of the Bcl-2 family of proteins. Pro-survival Mcl-1, which can block activation of the proapoptotic proteins, Bax and Bak, appears critical for the survival and maintenance of multiple haemopoietic cell types. To investigate the impact on haemopoiesis of simultaneously inhibiting both apoptosis pathways, we introduced the vavP-Mcl-1 transgene, which causes overexpression of Mcl-1 protein in all haemopoietic lineages, into Faslpr/lpr mice, which lack functional Fas and are prone to autoimmunity. The combined mutations had a modest impact on myelopoiesis, primarily an increase in the macrophage/monocyte population in Mcl-1tg/lpr mice compared with lpr or Mcl-1tg mice. The impact on lymphopoiesis was striking, with a marked elevation in all major lymphoid subsets, including the non-conventional double-negative (DN) T cells (TCRβ+ CD4– CD8– B220+ ) characteristic of Faslpr/lpr mice. Of note, the onset of autoimmunity was markedly accelerated in Mcl-1tg/lpr mice compared with lpr mice, and this was preceded by an increase in immunoglobulin (Ig)-producing cells and circulating autoantibodies. This degree of impact was surprising, given the relatively mild phenotype conferred by the vavP-Mcl-1 transgene by itself: a two- to threefold elevation of peripheral B and T cells, no significant increase in the non-conventional DN T-cell population and no autoimmune disease. Comparison of the phenotype with that of other susceptible mice suggests that the development of autoimmune disease in Mcl-1tg/lpr mice may be influenced not only by Ig-producing cells but also other haemopoietic cell types

    Quantitative analysis of WC stars: Constraints on neon abundances from ISO/SWS spectroscopy

    Get PDF
    Neon abundances are derived in four Galactic WC stars -- gamma Vel (WR11, WC8+O7.5III), HD156385 (WR90, WC7), HD192103 (WR135, WC8), and WR146 (WC5+O8) - using mid-infrared fine structure lines obtained with ISO/SWS. Stellar parameters for each star are derived using a non-LTE model atmospheric code (Hillier & Miller 1998) together with ultraviolet (IUE), optical (INT, AAT) and infrared (UKIRT, ISO) spectroscopy. In the case of gamma Vel, we adopt results from De Marco et al. (2000), who followed an identical approach. ISO/SWS datasets reveal the [NeIII] 15.5um line in each of our targets, while [NeII] 12.8um, [SIV] 10.5um and [SIII] 18.7um are observed solely in gamma Vel. Using a method updated from Barlow et al. (1988) to account for clumped winds, we derive Ne/He=3-4x10^-3 by number, plus S/He=6x10^-5 for gamma Vel. Neon is highly enriched, such that Ne/S in gamma Vel is eight times higher than cosmic values. However, observed Ne/He ratios are a factor of two times lower than predictions of current evolutionary models of massive stars. An imprecise mass-loss and distance were responsible for the much greater discrepancy in neon content identified by Barlow et al. Our sample of WC5--8 stars span a narrow range in T* (=55--71kK), with no trend towards higher temperature at earlier spectral type, supporting earlier results for a larger sample by Koesterke & Hamann (1995). Stellar luminosities range from 100,000 to 500,000 Lo, while 10^-5.1 < Mdot/(Mo/yr) < 10^-4.5, adopting clumped winds, in which volume filling factors are 10%. In all cases, wind performance numbers are less than 10, significantly lower than recent estimates. Carbon abundances span 0.08 < C/He < 0.25 by number, while oxygen abundances remain poorly constrained.Comment: 16 pages,7 figures accepted for MNRA

    Aria Da Capo / Slam! (March 30-31, 1990)

    Get PDF
    Program for Aria Da Capo / Slam! (March 30-31, 1990)

    X-ray Emission from Nitrogen-Type Wolf-Rayet Stars

    Full text link
    We summarize new X-ray detections of four nitrogen-type Wolf-Rayet (WR) stars obtained in a limited survey aimed at establishing the X-ray properties of WN stars across their full range of spectral subtypes. None of the detected stars is so far known to be a close binary. We report Chandra detections of WR 2 (WN2), WR 18 (WN4), and WR 134 (WN6), and an XMM-Newton detection of WR79a (WN9ha). These observations clearly demonstrate that both WNE and WNL stars are X-ray sources. We also discuss Chandra archive detections of the WN6h stars WR 20b, WR 24, and WR 136 and ROSAT non-detections of WR 16 (WN8h) and WR 78 (WN7h). The X-ray spectra of all WN detections show prominent emission lines and an admixture of cool (kT 2 keV) plasma. The hotter plasma is not predicted by radiative wind shock models and other as yet unidentified mechanisms are at work. Most stars show X-ray absorption in excess of that expected from visual extinction (Av), likely due to their strong winds or cold circumstellar gas. Existing data suggest a falloff in X-ray luminosity toward later WN7-9 subtypes, which have higher Lbol but slower, denser winds than WN2-6 stars. This provides a clue that wind properties may be a more crucial factor in determining emergent X-ray emission levels than bolometric luminosity.Comment: 42 pages, 5 tables, 10 figure
    corecore