196 research outputs found
Forest disturbance and regeneration: a mosaic of discrete gap dynamics and open matrix regimes?
Question: Recent research in boreal forest suggests that an ‘open matrix’ model may be more appropriate than the traditional model of spatially discrete gap dynamics for describing forest disturbance and regeneration, but what is the evidence from temperate broad-leaved deciduous forests concerning the prevalence of these alternative models?
Location: Semi-natural temperate broad-leaved deciduous forest in southern England.
Methods: Multi-temporal LiDAR data were used to monitor the changes in tree canopy height and canopy gaps over a 10-yr period for a 130-ha area of forest. Gap dynamics were characterized by quantifying gap creation, expansion, contraction and closure. By identifying the types and rates of canopy height transitions, areas of gap contraction and closure were attributed to the processes of lateral crown growth or vertical regeneration.
Results: Across the study site there was a zonation in canopy and gap properties and their dynamics. Many areas of the forest had the characteristics of open wood-pasture dominated by large, complex gaps being maintained under a regime of chronic disturbance. In these areas, several characteristics of the gap dynamics indicated that regeneration was restricted and this may be attributable to spatially-focused overgrazing by large herbivores. In contrast, other areas were characterized by high, closed canopy forest with small, discrete gaps where gap creation and infill were balanced.
Conclusions: At the landscape-scale broad-leaved deciduous forests contain a spatial mosaic of zones, which conform to different models of disturbance and regeneration dynamics; discrete gap dynamics and open matrix regimes are juxtaposed. It is now important to elucidate the abiotic factors and biotic interactions that determine the spatio-temporal distribution of the different regimes and to examine whether such a ‘regime mosaic’ model is applicable in other forest types
Getting Down to Specifics: Profiling Gene Expression and Protein-DNA Interactions in a Cell Type-Specific Manner.
The majority of multicellular organisms are comprised of an extraordinary range of cell types, with different properties and gene expression profiles. Understanding what makes each cell type unique, and how their individual characteristics are attributed, are key questions for both developmental and neurobiologists alike. The brain is an excellent example of the cellular diversity expressed in the majority of eukaryotes. The mouse brain comprises of approximately 75 million neurons varying in morphology, electrophysiology, and preferences for synaptic partners. A powerful process in beginning to pick apart the mechanisms that specify individual characteristics of the cell, as well as their fate, is to profile gene expression patterns, chromatin states, and transcriptional networks in a cell type-specific manner, i.e. only profiling the cells of interest in a particular tissue. Depending on the organism, the questions being investigated, and the material available, certain cell type-specific profiling methods are more suitable than others. This chapter reviews the approaches presently available for selecting and isolating specific cell types and evaluates their key features
Cause of Death and Predictors of All-Cause Mortality in Anticoagulated Patients With Nonvalvular Atrial Fibrillation : Data From ROCKET AF
M. Kaste on työryhmän ROCKET AF Steering Comm jäsen.Background-Atrial fibrillation is associated with higher mortality. Identification of causes of death and contemporary risk factors for all-cause mortality may guide interventions. Methods and Results-In the Rivaroxaban Once Daily Oral Direct Factor Xa Inhibition Compared with Vitamin K Antagonism for Prevention of Stroke and Embolism Trial in Atrial Fibrillation (ROCKET AF) study, patients with nonvalvular atrial fibrillation were randomized to rivaroxaban or dose-adjusted warfarin. Cox proportional hazards regression with backward elimination identified factors at randomization that were independently associated with all-cause mortality in the 14 171 participants in the intention-to-treat population. The median age was 73 years, and the mean CHADS(2) score was 3.5. Over 1.9 years of median follow-up, 1214 (8.6%) patients died. Kaplan-Meier mortality rates were 4.2% at 1 year and 8.9% at 2 years. The majority of classified deaths (1081) were cardiovascular (72%), whereas only 6% were nonhemorrhagic stroke or systemic embolism. No significant difference in all-cause mortality was observed between the rivaroxaban and warfarin arms (P=0.15). Heart failure (hazard ratio 1.51, 95% CI 1.33-1.70, P= 75 years (hazard ratio 1.69, 95% CI 1.51-1.90, P Conclusions-In a large population of patients anticoagulated for nonvalvular atrial fibrillation, approximate to 7 in 10 deaths were cardiovascular, whereasPeer reviewe
A homologous production system for Trichoderma reesei secreted proteins in a cellulase-free background
Recent demands for the production of biofuels from lignocellulose led to an increased interest in engineered cellulases from Trichoderma reesei or other fungal sources. While the methods to generate such mutant cellulases on DNA level are straightforward, there is often a bottleneck in their production since a correct posttranslational processing of these enzymes is needed to obtain highly active enzymes. Their production and subsequent enzymatic analysis in the homologous host T. reesei is, however, often disturbed by the concomitant production of other endogenous cellulases. As a useful alternative, we tested the production of cellulases in T. reesei in a genetic background where cellulase formation has been impaired by deletion of the major cellulase transcriptional activator gene xyr1. Three cellulase genes (cel7a, cel7b, and cel12a) were expressed under the promoter regions of the two highly expressed genes tef1 (encoding translation elongation factor 1-alpha) or cdna1 (encoding the hypothetical protein Trire2:110879). When cultivated on d-glucose as carbon source, the Δxyr1 strain secreted all three cellulases into the medium. Related to the introduced gene copy number, the cdna1 promoter appeared to be superior to the tef1 promoter. No signs of proteolysis were detected, and the individual cellulases could be assayed over a background essentially free of other cellulases. Hence this system can be used as a vehicle for rapid and high-throughput testing of cellulase muteins in a homologous background
The Pochonia chlamydosporia Serine Protease Gene vcp1 Is Subject to Regulation by Carbon, Nitrogen and pH: Implications for Nematode Biocontrol
The alkaline serine protease VCP1 of the fungus Pochonia chlamydosporia belongs to a family of subtilisin-like enzymes that are involved in infection of nematode and insect hosts. It is involved early in the infection process, removing the outer proteinaceous vitelline membrane of nematode eggs. Little is known about the regulation of this gene, even though an understanding of how nutrients and other factors affect its expression is critical for ensuring its efficacy as a biocontrol agent. This paper provides new information on the regulation of vcp1 expression. Sequence analysis of the upstream regulatory region of this gene in 30 isolates revealed that it was highly conserved and contained sequence motifs characteristic of genes that are subject to carbon, nitrogen and pH-regulation. Expression studies, monitoring enzyme activity and mRNA, confirmed that these factors affect VCP1 production. As expected, glucose reduced VCP1 expression and for a few hours so did ammonium chloride. Surprisingly, however, by 24 h VCP1 levels were increased in the presence of ammonium chloride for most isolates. Ambient pH also regulated VCP1 expression, with most isolates producing more VCP1 under alkaline conditions. There were some differences in the response of one isolate with a distinctive upstream sequence including a variant regulatory-motif profile. Cryo-scanning electron microscopy studies indicated that the presence of nematode eggs stimulates VCP1 production by P. chlamydosporia, but only where the two are in close contact. Overall, the results indicate that readily-metabolisable carbon sources and unfavourable pH in the rhizosphere/egg-mass environment may compromise nematode parasitism by P. chlamydosporia. However, contrary to previous indications using other nematophagous and entomopathogenic fungi, ammonium nitrate (e.g. from fertilizers) may enhance biocontrol potential in some circumstances
Two additive mechanisms impair the differentiation of 'substrate-selective' p38 inhibitors from classical p38 inhibitors in vitro
<p>Abstract</p> <p>Background</p> <p>The success of anti-TNF biologics for the treatment of rheumatoid arthritis has highlighted the importance of understanding the intracellular pathways that regulate TNF production in the quest for an orally-available small molecule inhibitor. p38 is known to strongly regulate TNF production via MK2. The failure of several p38 inhibitors in the clinic suggests the importance of other downstream pathways in normal cell function. Recent work has described a 'substrate-selective' p38 inhibitor that is able to preferentially block the activity of p38 against one substrate (MK2) versus another (ATF2). Using a combined experimental and computational approach, we have examined this mechanism in greater detail for two p38 substrates, MK2 and ATF2.</p> <p>Results</p> <p>We found that in a dual (MK2 and ATF2) substrate assay, MK2-p38 interaction reduced the activity of p38 against ATF2. We further constructed a detailed kinetic mechanistic model of p38 phosphorylation in the presence of multiple substrates and successfully predicted the performance of classical and so-called 'substrate-selective' p38 inhibitors in the dual substrate assay. Importantly, it was found that excess MK2 results in a stoichiometric effect in which the formation of p38-MK2-inhibitor complex prevents the phosphorylation of ATF2, despite the preference of the compound for the p38-MK2 complex over the p38-ATF2 complex. MK2 and p38 protein expression levels were quantified in U937, Thp-1 and PBMCs and found that [MK2] > [p38].</p> <p>Conclusion</p> <p>Our integrated mechanistic modeling and experimental validation provides an example of how systems biology approaches can be applied to drug discovery and provide a basis for decision-making with limited chemical matter. We find that, given our current understanding, it is unlikely that 'substrate-selective' inhibitors of p38 will work as originally intended when placed in the context of more complex cellular environments, largely due to a stoichiometric excess of MK2 relative to p38.</p
Use of alternative and complementary medicine in menopause
Objectives: To review the clinical evidence available for the treatment of menopausal symptoms with alternative and complementary medicine. Methods: The MEDLINE, PREMEDLINE and COCHRANE electronic databases for the years 1980–2002 were searched for articles concerning soy products, black cohosh, dong quai, acupuncture, ginseng and evening primrose oil. Studies pertaining to menopausal vasomotor symptoms, lipid profiles and bone mineral densities of postmenopausal women were included. The data from clinical trials were reviewed. Results: Soy isoflavones slightly decrease total cholesterol and LDL levels. The clinical significance of this small change is yet to be determined. The synthetic isoflavone derivative ipriflavone increases bone mineral density in healthy peri‐ and postmenopausal women with moderate bone mineral densities. Although earlier reports have claimed that soy is beneficial for the improvement of vasomotor symptoms, recent data do not support this claim. There are insufficient data on the other alternative therapies for treating menopausal symptoms at this time. Conclusion: Alternative and complementary medicine may play a role in the management of menopause, however, well‐designed large studies are still needed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/135146/1/ijgo195.pd
Biology and biotechnology of Trichoderma
Fungi of the genus Trichoderma are soilborne, green-spored ascomycetes that can be found all over the world. They have been studied with respect to various characteristics and applications and are known as successful colonizers of their habitats, efficiently fighting their competitors. Once established, they launch their potent degradative machinery for decomposition of the often heterogeneous substrate at hand. Therefore, distribution and phylogeny, defense mechanisms, beneficial as well as deleterious interaction with hosts, enzyme production and secretion, sexual development, and response to environmental conditions such as nutrients and light have been studied in great detail with many species of this genus, thus rendering Trichoderma one of the best studied fungi with the genome of three species currently available. Efficient biocontrol strains of the genus are being developed as promising biological fungicides, and their weaponry for this function also includes secondary metabolites with potential applications as novel antibiotics. The cellulases produced by Trichoderma reesei, the biotechnological workhorse of the genus, are important industrial products, especially with respect to production of second generation biofuels from cellulosic waste. Genetic engineering not only led to significant improvements in industrial processes but also to intriguing insights into the biology of these fungi and is now complemented by the availability of a sexual cycle in T. reesei/Hypocrea jecorina, which significantly facilitates both industrial and basic research. This review aims to give a broad overview on the qualities and versatility of the best studied Trichoderma species and to highlight intriguing findings as well as promising applications
Long non-coding RNAs display higher natural expression variation than protein-coding genes in healthy humans
Genomic perspectives on the evolution of fungal entomopathogenicity in Beauveria bassiana
The ascomycete fungus Beauveria bassiana is a pathogen of hundreds of insect species and is commercially produced as an environmentally friendly mycoinsecticide. We sequenced the genome of B. bassiana and a phylogenomic analysis confirmed that ascomycete entomopathogenicity is polyphyletic, but also revealed convergent evolution to insect pathogenicity. We also found many species-specific virulence genes and gene family expansions and contractions that correlate with host ranges and pathogenic strategies. These include B. bassiana having many more bacterial-like toxins (suggesting an unsuspected potential for oral toxicity) and effector-type proteins. The genome also revealed that B. bassiana resembles the closely related Cordyceps militaris in being heterothallic, although its sexual stage is rarely observed. A high throughput RNA-seq transcriptomic analysis revealed that B. bassiana could sense and adapt to different environmental niches by activating well-defined gene sets. The information from this study will facilitate further development of B. bassiana as a cost-effective mycoinsecticide
- …
