88 research outputs found
МІСЦЕ СЕГМЕНТІВ «BUDGET» ТА «EKONOMY» У ГОТЕЛЬНОМУ БІЗНЕСІ УКРАЇНИ. (ROLE OF SEGMENTS «BUDGET» AND «EKONOMY» IN THE UKRAINE HOTEL BUSINESS.)
Проаналізовано недоліки в готельному обслуговуванні туристів після проведення чемпіонату з футболу «Євро-2012», встановлено залежність туристичної привабливості України від цінової політики підприємств готельного бізнесу.
(Shortcomings in hotel service of tourists on realization of football championship «Euro 2012 « were analysed, the dependence of tourist attractiveness of Ukraine on price politics of hotel business enterprises was determined.
МІСЦЕ СЕГМЕНТІВ «BUDGET» ТА «EKONOMY» У ГОТЕЛЬНОМУ БІЗНЕСІ УКРАЇНИ
Shortcomings in hotel service of tourists on realization of football championship «Euro 2012 « were analysed, the dependence of tourist attractiveness of Ukraine on price politics of hotel business enterprises was determined.Проаналізовано недоліки в готельному обслуговуванні туристів після проведення чемпіонату з футболу «Євро-2012», встановлено залежність туристичної привабливості України від цінової політики підприємств готельного бізнесу
A Map of Dielectric Heterogeneity in a Membrane Protein: the Hetero-Oligomeric Cytochrome b 6 f Complex
The cytochrome b6f complex, a member of the cytochrome bc family that mediates energy transduction in photosynthetic and respiratory membranes, is a hetero-oligomeric complex that utilizes two pairs of b-hemes in a symmetric dimer to accomplish trans-membrane electron transfer, quinone oxidation–reduction, and generation of a proton electrochemical potential. Analysis of electron storage in this pathway, utilizing simultaneous measurement of heme reduction, and of circular dichroism (CD) spectra, to assay heme–heme interactions, implies a heterogeneous distribution of the dielectric constants that mediate electrostatic interactions between the four hemes in the complex. Crystallographic information was used to determine the identity of the interacting hemes. The Soret band CD signal is dominated by excitonic interaction between the intramonomer b-hemes, bn and bp, on the electrochemically negative and positive sides of the complex. Kinetic data imply that the most probable pathway for transfer of the two electrons needed for quinone oxidation–reduction utilizes this intramonomer heme pair, contradicting the expectation based on heme redox potentials and thermodynamics, that the two higher potential hemes bn on different monomers would be preferentially reduced. Energetically preferred intramonomer electron storage of electrons on the intramonomer b-hemes is found to require heterogeneity of interheme dielectric constants. Relative to the medium separating the two higher potential hemes bn, a relatively large dielectric constant must exist between the intramonomer b-hemes, allowing a smaller electrostatic repulsion between the reduced hemes. Heterogeneity of dielectric constants is an additional structure–function parameter of membrane protein complexes
Toward Time-Resolved Circular Dichroism Spectroscopy of Photosynthetic Proteins: Accessing Excitonic States
The focus of this thesis is the study the physical properties and functions of photosynthetic proteins and biomimetic artificial systems that are responsible for electron and energy transfer, and could facilitate the development of biomimetic, renewable energy sources. In particular, transient absorption and circular dichroism spectroscopy, and structure based quantum mechanical simulations have been used to determine triplet state energy transfer in the Fenna-Matthews-Olson antenna protein complex and the effective dielectric constant deep within cytochrome b6f and bc1 proteins complexes. ^ The Fenna-Matthews-Olson protein complex was one of the first proteins crystallized. Since then, a substantial study of its properties has been conducted. The protein became a model system for a lot of theoretical and experimental work because of strongly bound pigments that form the excitonic states, which play a major role in efficient energy transfer, photo-protection, charge separation and electron transfer. However, it is often difficult or even impossible to access those pigments with conventional spectroscopic tools. ^ In this work, I implemented novel time-resolved circular dichroism spectroscopic tools in nanosecond and femtosecond time domains. The first time-resolved circular dichroism spectra have been obtained and provide very rich and unique information even at room temperature. The measured transient circular dichroism spectra have uniquely identified the previously observed 11 microsecond component and assigned it to a new transition. ^ The low-temperature absorbance and circular dichroism spectroscopy coupled with structure-based excitonic simulation have been applied to study new Fenna-Matthews-Olson mutants that reveal incredible details about the excitonic energy landscape of the FMO protein. ^ The proof-of-concept femtosecond transient circular dichroism spectrometer has been built, and the first round of experiments using it appear promising. ^ This novel circular dichroism tools will be used to study photosynthetic proteins such as Fenna-Matthews-Olson antenna protein complex and Photosystem I intrinsic charge separation via direct probing and(or) excitation of strongly coupled pigments.
Experimental Setup for Evaluating Depth Sensors in Augmented Reality Technologies Used in Medical Devices
This paper presents a fully automated experimental setup tailored for evaluating the effectiveness of augmented and virtual reality technologies in healthcare settings for regulatory purposes, with a focus on the characterization of depth sensors. The setup is constructed as a modular benchtop platform that enables quantitative analysis of depth cameras essential for extended reality technologies in a controlled environment. We detail a design concept and considerations for an experimental configuration aimed at simulating realistic scenarios for head-mounted displays. The system includes an observation platform equipped with a three-degree-of-freedom motorized system and a test object stage. To accurately replicate real-world scenarios, we utilized an array of sensors, including commonly available range-sensing cameras and commercial augmented reality headsets, notably the Intel RealSense L515 LiDAR camera, integrated into the motion control system. The paper elaborates on the system architecture and the automated data collection process. We discuss several evaluation studies performed with this setup, examining factors such as spatial resolution, Z-accuracy, and pixel-to-pixel correlation. These studies provide valuable insights into the precision and reliability of these technologies in simulated healthcare environments
- …
