586 research outputs found
Advanced microwave sounding unit study for atmospheric infrared sounder
The Atmospheric Infrared Sounder (AIRS), the Advanced Microwave Sounding Unit (AMSU-A), and the Microwave Humidity Sounder (MHS, formerly AMSU-B) together constitute the advanced sounding system facility for the Earth Observing System (EOS). A summary of the EOS phase B activities are presented
Science requirements for passive microwave sensors on earth science geostationary platforms
It is suggested that the science requirements for passive geostationary microwave observations be met by near- and far-term sensors for each of two overlapping bands, with each band covering no more than a decade in frequency. The low-frequency band includes channels near 6, 10, 18, 22, 31 to 37, and possibly 50 to 60 GHz. The high-frequency band includes channels near 220 to 230, 183, 166, 118, 90 to 110, and possibly 50 to 60 and 31 to 37 GHz. The precise channel specifications will have to comply with international frequency allocations. The near-term goal is a high-frequency sensor based on a filled-aperture solid reflector antenna, which should rely on currently existing technology. The most critical issues for the near-term sensor are momentum compensation and the design of the feed assembly; these issues are coupled through the desired scan rate. The successful demonstration of the near-term (high-frequency) sensor will be essential for the continued development of far-term sensors satisfying the ideal science requirements. The far-term goal includes both a high-frequency sensor which meets the ideal science requirements, and a low-frequency sensor whose design will depend on advances in large antenna technology. The low-frequency (far-term) sensor might be based on one of several concepts: a deployable mesh reflector antenna of diameter at least 20 m, which shows promise for use at frequencies up to 30-GHz, a synthetic aperture interferometer of maximum baseline from 100 to 300 m, or a deployable phased-array bootlace lens, of diameter from 100 to 300 m. The first of these, a deployable mesh reflector antenna, will satisfy only the adequate spatial resolution requirements. The last two concepts meet the ideal spatial resolution science requirements, although they present significant structural and meteorological challenges
Analysis of Jovian decametric data: Study of radio emission mechanisms
Data gathered by the Voyager 1 and Voyager 2 Planetary Radio Astronomy Experiments (PRA) are unique in many ways including their frequency range, time resolution, polarization information and geometric characteristics. Studies of rapidly varying phenomena have thus far been hampered by paper display techniques which require large amounts of paper to exploit the full PRA time resolution. A software package capable of effectively displaying full 6s resolution PRA dynamic spectra on a high quality video monitor while compensating for the aforementioned variations was developed. The most striking phenomena revealed by the new display techniques is called Modulated Spectral Activity (MSA) because of its appearance in dynamic spectra as a series at least two parallel emission bands which drift back and forth in frequency on time scales of tens of seconds. In an attempt to locate and understand the MSA source mechanism, a catalogue has been compiled of the start and end of all known MSA events
Radio Astronomy
Contains reports on two research projects.United States Air Force (Contract AF19(628)-500)National Aeronautics and Space Administration (Grants NsG-250-62 and NsG-419)Lincoln Laboratory (Purchase Order DDL BB-107
Analysis of Jovian decamteric data: Study of radio emission mechanisms
This research effort involved careful examination of Jovian radio emission data below 40 MHz, with emphasis on the informative observations of the Planetary Radio Astronomy experiment (PRA) on the Voyager 1 and 2 spacecraft. The work is divided into three sections, decametric arcs, decametric V bursts, and hectometric modulated spectral activity (MSA)
Radio Astronomy
Contains reports on one research project.National Aeronautics and Space Administration (Contract NAS5-21980
Electrodynamics of Media
Contains reports on four research projects.Joint Services Electronics Program (Contract DAAB07-76-C-1400)California Institute of Technology (Contract 953524)National Science Foundation (Grant ENG76-01654)National Aeronautics and Space Administration (Contract NAS5-24139
Radio Astronomy
Contains reports on four research projects.National Aeronautics and Space Administration (Grant NsG-419
Analysis of Jovian decametric data: Study of radio emission mechanisms
The Voyager 1 and Voyager 2 Planetary Radio Astronomy Experiments (PRA) have produced the finest set of Jovian decametric radio emission data ever obtained. Jovian decametric L-burst and S-burst arcs were characterized and the data reconciled with models for the radio emission geometry and mechanisms. The first major results involve comparisons of the distribution of arc separations with longitudes. The identification and analyses of systematic variations in the PRA data have yielded interesting results, but only the most obvious features of the data were examined. Analyses of the PRA data were extended with the use of new 6-Sec formats that are more sensitive to the S-bursts
- …
