1,607 research outputs found

    Effective Hamiltonian in the Problem of a "Central Spin" Coupled to a Spin Environment

    Full text link
    We consider here the problem of a "giant spin", with spin quantum number S>>1, interacting with a set of microscopic spins. Interactions between the microscopic spins are ignored. This model describes the low-energy properties of magnetic grains or magnetic macromolecules interacting with a surrounding spin environment, such as nuclear spins. We describe a general method for truncating the model to another one, valid at low energies, in which a two-level system interacts with the environmental spins, and higher energy terms are absorbed into a new set of couplings. This is done using an instanton technique. We then verify the accuracy of this technique, by comparing the results for the low energy effective Hamiltonian, with results derived for the original giant spin, coupled to a microscopic spin, using exact diagonalisation techniques.Comment: 15 pages, Latex, with 9 ps figure

    Reply to the Comment on the 'Hole-digging' in ensembles of tunneling molecular magnets

    Get PDF
    Reply to the Comment of J.J. Alonso and J.F. Fernandez on the paper "'Hole-digging' in ensembles of tunneling molecular magnets" of I.S. Tupitsyn, P.C.E. Stamp and N.V. Prokof'ev (Phys. Rev. B 69, 132406, (2004)).Comment: 1 LaTeX page, 1 PS figure; submitted to PR

    Rapid attainment of a doubled haploid line from transgenic maize ( Zea mays L.) plants by means of anther culture

    Get PDF
    Summary: We present a strategy for establishing a transgenic doubled haploid maize line from heterozygous transgenic material by means of anther culture. Compared to conventional inbreeding, the in vitro androgenesis technique enables a faster generation of virtually fully homozygous lines. Since the androgenic response is highly genotype-dependent, we crossed transgenic, non-androgenic plants carrying a herbicide resistance marker gene (pat, encoding for phosphinothricin acetyl transferase) with a highly androgenic genotype. The transgenic progenies were used as donor plants for anther culture. One transgenic and three non-transgenic doubled haploid lines have been established within approximately 1 yr. The homozygosity of all four doubled haploid lines was tested by analysis of simple sequence repeat (SSR) markers at 19 different loci. Polymorphisms were found between the lines but not within the lines indicating the homozygous nature of the entire plant genome gained by anther culture. Southern blot analysis revealed that the transgenic donor plants and their doubled haploid progeny exhibited the same integration pattern of the pat gene. No segregation of the herbicide resistance trait has been observed among the progeny of the transgenic doubled haploid lin

    Pair-wise decoherence in coupled spin qubit networks

    Full text link
    Experiments involving phase coherent dynamics of networks of spins, such as echo experiments, will only work if decoherence can be suppressed. We show here, by analyzing the particular example of a crystalline network of Fe8 molecules, that most decoherence typically comes from pairwise interactions (particularly dipolar interactions) between the spins, which cause `correlated errors'. However at very low T these are strongly suppressed. These results have important implications for the design of quantum information processing systems using electronic spins.Comment: 4 pages, 4 figures. Final PRL versio

    Spin-fluctuation theory beyond Gaussian approximation

    Full text link
    A characteristic feature of the Gaussian approximation in the functional-integral approach to the spin-fluctuation theory is the jump phase transition to the paramagnetic state. We eliminate the jump and obtain a continuous second-order phase transition by taking into account high-order terms in the expansion of the free energy in powers of the fluctuating exchange field. The third-order term of the free energy renormalizes the mean field, and fourth-order term, responsible for the interaction of the fluctuations, renormalizes the spin susceptibility. The extended theory is applied to the calculation of magnetic properties of Fe-Ni Invar.Comment: 20 pages, 4 figure

    Quantum Relaxation of Magnetisation in Magnetic Particles

    Full text link
    At temperatures below the magnetic anisotropy energy, monodomain magnetic systems (small particles, nanomagnetic devices, etc.) must relax quantum mechanically. This quantum relaxation must be mediated by the coupling to both nuclear spins and phonons (and electrons if either particle or substrate is conducting. We analyze the effect of each of these couplings, and then combine them. Conducting systems can be modelled by a "giant Kondo" Hamiltonian, with nuclear spins added in as well. At low temperatures, even microscopic particles on a conducting substrate (containing only 105010-50 spins) will have their magnetisation frozen over millenia by a combination of electronic dissipation and the "degeneracy blocking" caused by nuclear spins. Raising the temperature leads to a sudden unblocking of the spin dynamics at a well defined temperature. Insulating systems are quite different. The relaxation is strongly enhanced by the coupling to nuclear spins. At short times the magnetisation of an ensemble of particles relaxes logarithmically in time, after an initial very fast decay; this relaxation proceeds entirely via the nuclear spins. At longer times phonons take over, but the decay rate is still governed by the temperature-dependent nuclear bias field acting on the particles - decay may be exponential or power-law depending on the temperature. The most surprising feature of the results is the pivotal role played by the nuclear spins. The results are relevant to any experiments on magnetic particles in which interparticle dipolar interactions are unimportant. They are also relevant to future magnetic device technology.Comment: 30 pages, RevTex, e:mail , Submitted to J.Low Temp.Phys. on 1 Nov. 199

    An alternate model for magnetization plateaus in the molecular magnet V_15

    Get PDF
    Starting from an antiferromagnetic Heisenberg Hamiltonian for the fifteen spin-1/2 ions in V_15, we construct an effective spin Hamiltonian involving eight low-lying states (spin-1/2 and spin-3/2) coupled to a phonon bath. We numerically solve the time-dependent Schrodinger equation of this system, and obtain the magnetization as a function of temperature in a time-dependent magnetic field. The magnetization exhibits unusual patterns of hysteresis and plateaus as the field sweep rate and temperature are varied. The observed plateaus are not due to quantum tunneling but are a result of thermal averaging. Our results are in good agreement with recent experimental observations.Comment: Revtex, 4 pages, 5 eps figure

    Quantum Oscillations of Electrons and of Composite Fermions in Two Dimensions: Beyond the Luttinger Expansion

    Full text link
    Quantum oscillation phenomena, in conventional 2-dimensional electron systems and in the fractional quantum Hall effect, are usually treated in the Lifshitz-Kosevich formalism. This is justified in three dimensions by Luttinger's expansion, in the parameter omegac/μomega_c/\mu. We show that in two dimensions this expansion breaks down, and derive a new expression, exact in the limit where rainbow graphs dominate the self-energy. Application of our results to the fractional quantum Hall effect near half-filling shows very strong deviations from Lifshitz-Kosevich behaviour. We expect that such deviations will be important in any strongly-interacting 2-dimensional electronic system.Comment: 4 pages, 3 figures, LaTe

    Stability of Bose Einstein condensates of hot magnons in YIG

    Full text link
    We investigate the stability of the recently discovered room temperature Bose-Einstein condensate (BEC) of magnons in Ytrrium Iron Garnet (YIG) films. We show that magnon-magnon interactions depend strongly on the external field orientation, and that the BEC in current experiments is actually metastable - it only survives because of finite size effects, and because the BEC density is very low. On the other hand a strong field applied perpendicular to the sample plane leads to a repulsive magnon-magnon interaction; we predict that a high-density magnon BEC can then be formed in this perpendicular field geometry.Comment: Submitted to Physical Review Letter

    Electronic structure of superposition states in flux qubits

    Full text link
    Flux qubits, small superconducting loops interrupted by Josephson junctions, are successful realizations of quantum coherence for macroscopic variables. Superconductivity in these loops is carried by 106\sim 10^6 -- 101010^{10} electrons, which has been interpreted as suggesting that coherent superpositions of such current states are macroscopic superpositions analogous to Schr\"odinger's cat. We provide a full microscopic analysis of such qubits, from which the macroscopic quantum description can be derived. This reveals that the number of microscopic constituents participating in superposition states for experimentally accessible flux qubits is surprisingly but not trivially small. The combination of this relatively small size with large differences between macroscopic observables in the two branches is seen to result from the Fermi statistics of the electrons and the large disparity between the values of superfluid and Fermi velocity in these systems.Comment: Minor cosmetic changes. Published version
    corecore