1,607 research outputs found
Effective Hamiltonian in the Problem of a "Central Spin" Coupled to a Spin Environment
We consider here the problem of a "giant spin", with spin quantum number
S>>1, interacting with a set of microscopic spins. Interactions between the
microscopic spins are ignored. This model describes the low-energy properties
of magnetic grains or magnetic macromolecules interacting with a surrounding
spin environment, such as nuclear spins. We describe a general method for
truncating the model to another one, valid at low energies, in which a
two-level system interacts with the environmental spins, and higher energy
terms are absorbed into a new set of couplings. This is done using an instanton
technique. We then verify the accuracy of this technique, by comparing the
results for the low energy effective Hamiltonian, with results derived for the
original giant spin, coupled to a microscopic spin, using exact diagonalisation
techniques.Comment: 15 pages, Latex, with 9 ps figure
Reply to the Comment on the 'Hole-digging' in ensembles of tunneling molecular magnets
Reply to the Comment of J.J. Alonso and J.F. Fernandez on the paper
"'Hole-digging' in ensembles of tunneling molecular magnets" of I.S. Tupitsyn,
P.C.E. Stamp and N.V. Prokof'ev (Phys. Rev. B 69, 132406, (2004)).Comment: 1 LaTeX page, 1 PS figure; submitted to PR
Rapid attainment of a doubled haploid line from transgenic maize ( Zea mays L.) plants by means of anther culture
Summary: We present a strategy for establishing a transgenic doubled haploid maize line from heterozygous transgenic material by means of anther culture. Compared to conventional inbreeding, the in vitro androgenesis technique enables a faster generation of virtually fully homozygous lines. Since the androgenic response is highly genotype-dependent, we crossed transgenic, non-androgenic plants carrying a herbicide resistance marker gene (pat, encoding for phosphinothricin acetyl transferase) with a highly androgenic genotype. The transgenic progenies were used as donor plants for anther culture. One transgenic and three non-transgenic doubled haploid lines have been established within approximately 1 yr. The homozygosity of all four doubled haploid lines was tested by analysis of simple sequence repeat (SSR) markers at 19 different loci. Polymorphisms were found between the lines but not within the lines indicating the homozygous nature of the entire plant genome gained by anther culture. Southern blot analysis revealed that the transgenic donor plants and their doubled haploid progeny exhibited the same integration pattern of the pat gene. No segregation of the herbicide resistance trait has been observed among the progeny of the transgenic doubled haploid lin
Pair-wise decoherence in coupled spin qubit networks
Experiments involving phase coherent dynamics of networks of spins, such as
echo experiments, will only work if decoherence can be suppressed. We show
here, by analyzing the particular example of a crystalline network of Fe8
molecules, that most decoherence typically comes from pairwise interactions
(particularly dipolar interactions) between the spins, which cause `correlated
errors'. However at very low T these are strongly suppressed. These results
have important implications for the design of quantum information processing
systems using electronic spins.Comment: 4 pages, 4 figures. Final PRL versio
Spin-fluctuation theory beyond Gaussian approximation
A characteristic feature of the Gaussian approximation in the
functional-integral approach to the spin-fluctuation theory is the jump phase
transition to the paramagnetic state. We eliminate the jump and obtain a
continuous second-order phase transition by taking into account high-order
terms in the expansion of the free energy in powers of the fluctuating exchange
field. The third-order term of the free energy renormalizes the mean field, and
fourth-order term, responsible for the interaction of the fluctuations,
renormalizes the spin susceptibility. The extended theory is applied to the
calculation of magnetic properties of Fe-Ni Invar.Comment: 20 pages, 4 figure
Quantum Relaxation of Magnetisation in Magnetic Particles
At temperatures below the magnetic anisotropy energy, monodomain magnetic
systems (small particles, nanomagnetic devices, etc.) must relax quantum
mechanically. This quantum relaxation must be mediated by the coupling to both
nuclear spins and phonons (and electrons if either particle or substrate is
conducting. We analyze the effect of each of these couplings, and then combine
them. Conducting systems can be modelled by a "giant Kondo" Hamiltonian, with
nuclear spins added in as well. At low temperatures, even microscopic particles
on a conducting substrate (containing only spins) will have their
magnetisation frozen over millenia by a combination of electronic dissipation
and the "degeneracy blocking" caused by nuclear spins. Raising the temperature
leads to a sudden unblocking of the spin dynamics at a well defined
temperature. Insulating systems are quite different. The relaxation is strongly
enhanced by the coupling to nuclear spins. At short times the magnetisation of
an ensemble of particles relaxes logarithmically in time, after an initial very
fast decay; this relaxation proceeds entirely via the nuclear spins. At longer
times phonons take over, but the decay rate is still governed by the
temperature-dependent nuclear bias field acting on the particles - decay may be
exponential or power-law depending on the temperature. The most surprising
feature of the results is the pivotal role played by the nuclear spins. The
results are relevant to any experiments on magnetic particles in which
interparticle dipolar interactions are unimportant. They are also relevant to
future magnetic device technology.Comment: 30 pages, RevTex, e:mail , Submitted to J.Low
Temp.Phys. on 1 Nov. 199
An alternate model for magnetization plateaus in the molecular magnet V_15
Starting from an antiferromagnetic Heisenberg Hamiltonian for the fifteen
spin-1/2 ions in V_15, we construct an effective spin Hamiltonian involving
eight low-lying states (spin-1/2 and spin-3/2) coupled to a phonon bath. We
numerically solve the time-dependent Schrodinger equation of this system, and
obtain the magnetization as a function of temperature in a time-dependent
magnetic field. The magnetization exhibits unusual patterns of hysteresis and
plateaus as the field sweep rate and temperature are varied. The observed
plateaus are not due to quantum tunneling but are a result of thermal
averaging. Our results are in good agreement with recent experimental
observations.Comment: Revtex, 4 pages, 5 eps figure
Quantum Oscillations of Electrons and of Composite Fermions in Two Dimensions: Beyond the Luttinger Expansion
Quantum oscillation phenomena, in conventional 2-dimensional electron systems
and in the fractional quantum Hall effect, are usually treated in the
Lifshitz-Kosevich formalism. This is justified in three dimensions by
Luttinger's expansion, in the parameter . We show that in two
dimensions this expansion breaks down, and derive a new expression, exact in
the limit where rainbow graphs dominate the self-energy. Application of our
results to the fractional quantum Hall effect near half-filling shows very
strong deviations from Lifshitz-Kosevich behaviour. We expect that such
deviations will be important in any strongly-interacting 2-dimensional
electronic system.Comment: 4 pages, 3 figures, LaTe
Stability of Bose Einstein condensates of hot magnons in YIG
We investigate the stability of the recently discovered room temperature
Bose-Einstein condensate (BEC) of magnons in Ytrrium Iron Garnet (YIG) films.
We show that magnon-magnon interactions depend strongly on the external field
orientation, and that the BEC in current experiments is actually metastable -
it only survives because of finite size effects, and because the BEC density is
very low. On the other hand a strong field applied perpendicular to the sample
plane leads to a repulsive magnon-magnon interaction; we predict that a
high-density magnon BEC can then be formed in this perpendicular field
geometry.Comment: Submitted to Physical Review Letter
Electronic structure of superposition states in flux qubits
Flux qubits, small superconducting loops interrupted by Josephson junctions,
are successful realizations of quantum coherence for macroscopic variables.
Superconductivity in these loops is carried by --
electrons, which has been interpreted as suggesting that coherent
superpositions of such current states are macroscopic superpositions analogous
to Schr\"odinger's cat. We provide a full microscopic analysis of such qubits,
from which the macroscopic quantum description can be derived. This reveals
that the number of microscopic constituents participating in superposition
states for experimentally accessible flux qubits is surprisingly but not
trivially small. The combination of this relatively small size with large
differences between macroscopic observables in the two branches is seen to
result from the Fermi statistics of the electrons and the large disparity
between the values of superfluid and Fermi velocity in these systems.Comment: Minor cosmetic changes. Published version
- …
