188 research outputs found

    Sterling Monetary Framework

    Get PDF

    Sequence stratigraphic interpretation of a Pennsylvanian (Upper Carboniferous) coal from the Central Appalachian Basin, USA

    Get PDF
    Peat mires retain a sensitive record of water-table (base-level) fluctuations throughout their accumulation. On this basis, coals provide one of the best opportunities to interpret high-resolution base-level change in ancient non-marine deposits. The petrographic composition of 275 samples collected from 11 localities along a 100km south-west to north-east transect across the regionally extensive (&gt;37000km2) Pennsylvanian (Upper Carboniferous) Fire Clay coal of the Central Appalachian Basin, USA was analysed to determine its internal stratigraphy. The coal is positioned within the late lowstand/early transgressive systems tract of a fourth-order depositional sequence. The results of the petrographic analyses reveal a cyclicity in the composition of the Fire Clay coal, which defines six units that are correlated over more than 100km. Each coal cycle is characterized by a gradual upward transition from vitrinite-dominated to inertinite-dominated coal, which represents a 'drying-up' succession. Increased concentrations of resistant peat components at the top of the drying-up successions indicate reduced peat accumulation rates associated with slowing rate of water-table rise, and may represent a residue of peat remaining from a phase of exposure and erosion resulting from a falling water table. These drying-up successions are bound by surfaces that display an abrupt coal facies shift from inertinite-rich to vitrinite-rich coal, representing a rapid water-table rise. Each cycle represents markedly different mire conditions with different aerial distributions, which supports the notion of temporal disconnection between each unit of coal, and suggests that considerable time may be 'locked-up' in unit bounding exposure surfaces. Recognition that the rate of peat accumulation in a mire may vary considerably through time, has important implications for studies which assume that peat and coal successions provide continuous and time-invariant records of base-level fluctuations or palaeoecological change.</p

    Effects of composition and phase relations on mechanical properties and crystallisation of silicate glasses

    Get PDF
    Crystallization, mechanical properties and workability are all important for commercialization and optimization of silicate glass compositions. However, the inter-relations of these properties as a function of glass composition have received little investigation. Soda-lime-silica glasses with Na2O-MgO-CaO-Al2O3-SiO2 compositions relevant to commercial glass manufacture were experimentally studied and multiple liquidus temperature and viscosity models were used to complement the experimental results. Liquidus temperatures of the fabricated glasses were measured by the temperature gradient technique, and Rietveld refinements were applied to X-Ray powder diffraction (XRD) data for devitrified glasses, enabling quantitative determination of the crystalline and amorphous fractions and the nature of the crystals. Structural properties were investigated by Raman spectroscopy. Acoustic echography, micro-Vicker’s indentation and single-edge notched bend testing methods were used to measure Young’s moduli, hardness and fracture toughness, respectively. It is shown that it is possible to design lower-melting soda-lime-silica glass compositions without compromising their mechanical and crystallization properties. Unlike Young’s modulus, brittleness is highly responsive to the composition in soda-lime-silica glasses, and notably low brittleness values can be obtained in glasses with compositions in the wollastonite primary phase field: an effect that is more pronounced in the silica primary phase field. The measured bulk crystal fractions of the glasses subjected to devitrification at the lowest possible industrial conditioning temperatures, indicate that soda-lime-silica glass melts can be conditioned close to their liquidus temperatures within the compositional ranges of the primary phase fields of cristobalite, wollastonite or their combinations

    Assessment of web crippling design provisions for application to proprietary soldier beams

    Get PDF
    Structures used for temporary works are lightweight so that they are easy to transport, erect and dismantle. Particular care should be taken in their design as local instabilities could arise due to their thin-walled nature. This article presents 12 tests on proprietary soldier beams subjected to two concentrate opposing loads applied simultaneously. The geometry of the proprietary beams feature cold-formed C-shaped sections with web holes connected back to back with internal spacers. In the absence of design rules for application to such members, the experimental results are used in the present investigation to assess the suitability of the provisions for the web crippling design of coldformed steel members as well as existing design methods from the literature, which account for the effect of perforations in the web. Experimental and predicted resistances are compared and design recommendations are provided.Leada Acro

    Intravesical device-assisted therapies for non-muscle-invasive bladder cancer

    Get PDF
    Non-muscle-invasive bladder cancer (NMIBC), the most prevalent type of bladder cancer, accounts for ~75% of bladder cancer diagnoses. This disease has a 50% risk of recurrence and 20% risk of progression within 5 years, despite the use of intravesical adjuvant treatments (such as BCG or mitomycin C) that are recommended by clinical guidelines. Intravesical device-assisted therapies, such as radiofrequency-induced thermochemotherapeutic effect (RITE), conductive hyperthermic chemotherapy, and electromotive drug administration (EMDA), have shown promising efficacy. These device-assisted treatments are an attractive alternative to BCG, as issues with supply have been a problem in some countries. RITE might be an effective treatment option for some patients who have experienced BCG failure and are not candidates for radical cystectomy. Data from trials using EMDA suggest that it is effective in high-risk disease but requires further validation, and results of randomized trials are eagerly awaited for conductive hyperthermic chemotherapy. Considerable heterogeneity in patient cohorts, treatment sessions, use of maintenance regimens, and single-arm study design makes it difficult to draw solid conclusions, although randomized controlled trials have been reported for RITE and EMDA

    Particulate Matter in the Hospital Environment

    Get PDF
    Investigations of particle concentration levels and size distribution were conducted in the complex hospital system of the Royal Children’s and the Royal Brisbane Hospitals. The aim of the measurements was to provide an indication of particulate sources in the hospital environment and relate particle characteristics to the operating parameters of the hospitals. The measurements were performed using the most advanced instrumentation for size classification in the submicrometer and supermicrometer levels. The conclusions from the investigation were (i) that indoor concentration levels of particle numbers are closely related to outdoor concentration levels, indicating that outdoor particulates were the main contributor to the indoor particulates in the hospitals under investigations and (ii) that the performance of filtration/ventilation systems is the most critical parameter in reducing general particulate concentration levels in those hospital units where medical procedures can result in generation of potentially hazardous organic aerosols
    corecore