3,881 research outputs found
Fermi arcs and the hidden zeros of the Green's function in the pseudogap state
We investigate the low energy properties of a correlated metal in the
proximity of a Mott insulator within the Hubbard model in two dimensions. We
introduce a new version of the Cellular Dynamical Mean Field Theory using
cumulants as the basic irreducible objects. These are used for re-constructing
the lattice quantities from their cluster counterparts. The zero temperature
one particle Green's function is characterized by the appearance of lines of
zeros, in addition to a Fermi surface which changes topology as a function of
doping. We show that these features are intimately connected to the opening of
a pseudogap in the one particle spectrum and provide a simple picture for the
appearance of Fermi arcs.Comment: revised version; 5 pages, 3 figure
Induced spin texture in semiconductor/topological insulator heterostructures
We show that a semiconductor thin film can acquire a non-trivial spin texture
due to the proximity effect induced by a topological insulator. The effect
stems from coupling to the topological surface states and is present even when
the insulator is doped. We propose a semiconductor/topological insulator
heterostructure as a device that allows measuring interface properties and
probing surface states in uncompensated samples. We also find that the
topological insulator surface modes can be significantly broadened and shifted
by the presence of metallic contacts.Comment: 6 pages, 2 figures, published versio
Strong Coupling Theory for Interacting Lattice Models
We develop a strong coupling approach for a general lattice problem. We argue
that this strong coupling perspective represents the natural framework for a
generalization of the dynamical mean field theory (DMFT). The main result of
this analysis is twofold: 1) It provides the tools for a unified treatment of
any non-local contribution to the Hamiltonian. Within our scheme, non-local
terms such as hopping terms, spin-spin interactions, or non-local Coulomb
interactions are treated on equal footing. 2) By performing a detailed
strong-coupling analysis of a generalized lattice problem, we establish the
basis for possible clean and systematic extensions beyond DMFT. To this end, we
study the problem using three different perspectives. First, we develop a
generalized expansion around the atomic limit in terms of the coupling
constants for the non-local contributions to the Hamiltonian. By analyzing the
diagrammatics associated with this expansion, we establish the equations for a
generalized dynamical mean-field theory (G-DMFT). Second, we formulate the
theory in terms of a generalized strong coupling version of the Baym-Kadanoff
functional. Third, following Pairault, Senechal, and Tremblay, we present our
scheme in the language of a perturbation theory for canonical fermionic and
bosonic fields and we establish the interpretation of various strong coupling
quantities within a standard perturbative picture.Comment: Revised Version, 17 pages, 5 figure
Coherent control of injection currents in high-quality films of Bi2Se3
Films of the topological insulator Bi2Se3 are grown by molecular beam epitaxy
with in-situ reflection high-energy electron diffraction. The films are shown
to be high-quality by X-ray reflectivity and diffraction and atomic-force
microscopy. Quantum interference control of photocurrents is observed by
excitation with harmonically related pulses and detected by terahertz
radiation. The injection current obeys the expected excitation irradiance
dependence, showing linear dependence on the fundamental pulse irradiance and
square-root irradiance dependence of the frequency-doubled optical pulses. The
injection current also follows a sinusoidal relative-phase dependence between
the two excitation pulses. These results confirm the third-order nonlinear
optical origins of the coherently controlled injection current. Experiments are
compared to a tight-binding band structure to illustrate the possible optical
transitions that occur in creating the injection current.Comment: 11 pages, 3 figure, journal articl
Nodal/Antinodal Dichotomy and the Two Gaps of a Superconducting Doped Mott Insulator
We study the superconducting state of the hole-doped two-dimensional Hubbard
model using Cellular Dynamical Mean Field Theory, with the Lanczos method as
impurity solver. In the under-doped regime, we find a natural decomposition of
the one-particle (photoemission) energy-gap into two components. The gap in the
nodal regions, stemming from the anomalous self-energy, decreases with
decreasing doping. The antinodal gap has an additional contribution from the
normal component of the self-energy, inherited from the normal-state pseudogap,
and it increases as the Mott insulating phase is approached.Comment: Corrected typos, 4.5 pages, 4 figure
Surface composition of BaTiO3/SrTiO3(001) films grown by atomic oxygen plasma assisted molecular beam epitaxy
We have investigated the growth of BaTiO3 thin films deposited on pure and 1%
Nb-doped SrTiO3(001) single crystals using atomic oxygen assisted molecular
beam epitaxy (AO-MBE) and dedicated Ba and Ti Knudsen cells. Thicknesses up to
30 nm were investigated for various layer compositions. We demonstrate 2D
growth and epitaxial single crystalline BaTiO3 layers up to 10 nm before
additional 3D features appear; lattice parameter relaxation occurs during the
first few nanometers and is completed at {\guillemotright}10 nm. The presence
of a Ba oxide rich top layer that probably favors 2D growth is evidenced for
well crystallized layers. We show that the Ba oxide rich top layer can be
removed by chemical etching. The present work stresses the importance of
stoichiometry and surface composition of BaTiO3 layers, especially in view of
their integration in devices.Comment: In press in J. Appl. Phy
Pheochromocytoma – clinical manifestations, diagnosis and current perioperative management
Pheochromocytoma is a neuroendocrine tumor characterized by the excessive production of catecholamines (epinephrine, norepinephrine, and dopamine). The diagnosis is suspected due to hypertensive paroxysms, associated with vegetative phenomena, due to the catecholaminergic hypersecretion. Diagnosis involves biochemical tests that reveal elevated levels of catecholamine metabolites (metanephrine and normetanephrine). Functional imaging, such as 123I-metaiodobenzylguanidine scintigraphy (123I-MIBG), has increased specificity in identifying the catecholamine-producing tumor and its metastases. The gold-standard treatment for patients with pheochromocytoma is represented by the surgical removal of the tumor. Before surgical resection, it is important to optimize blood pressure and intravascular volume in order to avoid negative hemodynamic events
- …
