487 research outputs found
'The smoking toolkit study': a national study of smoking and smoking cessation in England
Background: Up-to-date data tracking of national smoking patterns and cessation-related behaviour is required to evaluate and inform tobacco control strategies. The Smoking Toolkit Study (STS) was designed for this role. This paper describes the methodology of the STS and examines as far as possible the representativeness of the samples.Methods: The STS consists of monthly, cross sectional household interviews of adults aged 16 and over in England with smokers and recent ex-smokers in each monthly wave followed up by postal questionnaires three and six months later. Between November 2006 and December 2010 the baseline survey was completed by 90,568 participants. STS demographic, prevalence and cigarette consumption estimates are compared with those from the Health Survey for England (HSE) and the General Lifestyle Survey (GLF) for 2007-2009.Results: Smoking prevalence estimates of all the surveys were similar from 2008 onwards (e. g 2008 STS = 22.0%, 95% C. I. = 21.4% to 22.6%, HSE = 21.7%, 95% C. I. = 20.9% to 22.6%, GLF = 20.8%, 95% C. I. = 19.7% to 21.9%), although there was heterogeneity in 2007 (chi-square = 50.30, p < 0.001). Some differences were observed across surveys within sociodemographic sub-groups, although largely in 2007. Cigarette consumption was virtually identical in all surveys and years.Conclusion: There is reason to believe that the STS findings (see http://www.smokinginengland.info) are generalisable to the adult population of England
Antibiotic sorption onto microplastics in water: A critical review of the factors, mechanisms and implications.
Microplastics as vectors for contaminants in the environment is becoming a topic of public interest. Microplastics have been found to actively adsorb heavy metals, per-fluorinated alkyl substances (PFAS), polychlorinated biphenyls (PCBs), polyaromatic hydrocarbons (PAHs), pharmaceuticals and personal care products (PPCPs) and polybrominated diethers (PBDs) onto their surface. Particular interest in microplastics capacity to adsorb antibiotics needs further attention due to the potential role this interaction plays on antibiotic resistance. Antibiotic sorption experiments have been documented in the literature, but the data has not yet been critically reviewed. This review aims to comprehensively assess the factors that affect antibiotic sorption onto microplastics. It is recognised that the physico- chemical properties of the polymers, the antibiotic chemical properties, and the properties of the solution all play a crucial role in the antibiotic sorption capacity of microplastics. Weathering of microplastics was found to increase the antibiotic sorption capacity by up to 171%. An increase in solution salinity was found to decrease the sorption of antibiotics onto microplastics, in some instances by 100%. pH also has a substantial effect on sorption capacity, illustrating the significance of electrostatic interactions on the sorption of antibiotics onto microplastics. The need for a uniform experimental design when testing antibiotic sorption is highlighted to remove inconsistencies in the data currently presented. Current literature examines the link between antibiotic sorption and antibiotic resistance, however, further studies are still required to fully understand this emerging global crisis
Evaluating the generation of microplastics from an unlikely source: The unintentional consequence of the current plastic recycling process.
This study casts light on the potential of microplastic generation during plastic recycling - an unintended consequence of the process. To date, microplastics have been detected in the wastewater and sludge from plastic recycling facilities; however, generation pathways, factors and minimisation strategies are understudied. The purpose of this study is to identify the factors affecting microplastic generation, namely, plastic type and weathering conditions. The size reduction phase, which involved the mechanical shredding of the plastic waste material, was identified to be the predominate source of microplastic generation. Material type was found to significantly affect microplastic generation rates. Focussing on the microplastic particles in the size range of 0.212-1.18 mm, polycarbonate (PC), polyethylene terephthalate (PET), polypropylene (PP), and high-density polyethylene (HDPE) generated 28,600 ± 3961, 21,093 ± 2211, 18,987 ± 752 and 6807 ± 393 particles/kg of plastic material shredded, respectively. The significant variations between different plastic types were correlated (R2 = 0.88) to the hardness of the plastic. Environmental weathering was observed to significantly affect microplastic generation rates. Generation rates increased for PC, PET, PP, and HDPE by 185.05 %, 159.80 %, 123.70 % and 121.74 %, respectively, over a six-month environmental exposure period. The results in this study confirm production of large amounts of microplastics from the plastic recycling industry through its operational processes, which may be a significant source for microplastic pollution if measures to reduce their production and removal from wastewater and sludge are not considered
Change in the chemical, mechanical and physical properties of plastics due to UVA degradation in different water matrices: A study on the recyclability of littered plastics.
To move towards a circular society, the recyclability potential of littered plastics should be explored to provide potential value for a product that is typically destined for landfill or incineration. This study aims to understand the changes in physical, mechanical, and chemical properties of four types of plastics (polyethylene terephthalate (PET), polypropylene (PP), polycarbonate (PC) and polylactic acid (PLA) after simulated environmental degradation. Plastic samples were subjected to different water matrices (in an attempt to simulate terrestrial, ocean, and river environments) to understand the role the environment plays on plastic degradation. Significant physical, mechanical, and chemical changes were observed for the PET, PP and PLA samples. Flakes and cracks were noted during the scanning electron microscopy (SEM) analysis of PET, PP and PLA illustrating the surface degradation that had occurred. Colour scanning of the samples provided complementary information about their suitability for upcycling or downcycling. Both PET and PP had visual colour changes, making them unsuitable for upcycling purposes. PLA had a significant decrease in its tensile strength in all environmental conditions, alongside significant chemical and surface change as revealed by Fourier-transform infrared (FTIR) and SEM analysis, respectively. PC had little to no changes in its chemical, mechanical, and physical properties due to high resistance to solar (UVA) degradation in presence of salt and natural organic matter in the form of humic acid. Therefore, out of the four types of plastics tested, PC was the only plastic determined to have good upcycling potential if collected from the environment. However, PET and PP could still be recycled into lower value products (i.e., construction materials)
Techniques for Arbuscular Mycorrhiza Inoculum Reduction
It is well established that arbuscular mycorrhizal (AM) fungi can play a significant role in sustainable crop production and environmental conservation. With the increasing awareness of the ecological significance of mycorrhizas and their diversity, research needs to be directed away from simple records of their occurrence or casual speculation of their function (Smith and Read 1997). Rather, the need is for empirical studies and investigations of the quantitative aspects of the distribution of different types and their contribution to the function of ecosystems.
There is no such thing as a fungal effect or a plant effect, but there is an interaction between both symbionts. This results from the AM fungi and plant community size and structure, soil and climatic conditions, and the interplay between all these factors (Kahiluoto et al. 2000). Consequently, it is readily understood that it is the problems associated with methodology that limit our understanding of the functioning and effects of AM fungi within field communities.
Given the ubiquous presence of AM fungi, a major constraint to the evaluation of the activity of AM colonisation has been the need to account for the indigenous soil native inoculum. This has to be controlled (i.e. reduced or eliminated) if we are to obtain a true control treatment for analysis of arbuscular mycorrhizas in natural substrates. There are various procedures possible for achieving such an objective, and the purpose of this chapter is to provide details of a number of techniques and present some evaluation of their advantages and disadvantages.
Although there have been a large number of experiments to investigated the effectiveness of different sterilization procedures for reducing pathogenic soil fungi, little information is available on their impact on beneficial organisms such as AM fungi. Furthermore, some of the techniques have been shown to affect physical and chemical soil characteristics as well as eliminate soil microorganisms that can interfere with the development of mycorrhizas, and this creates difficulties in the interpretation of results simply in terms of possible mycorrhizal activity.
An important subject is the differentiation of methods that involve sterilization from those focussed on indigenous inoculum reduction. Soil sterilization aims to destroy or eliminate microbial cells while maintaining the existing chemical and physical characteristics of the soil (Wolf and Skipper 1994). Consequently, it is often used for experiments focussed on specific AM fungi, or to establish a negative control in some other types of study. In contrast, the purpose of inoculum reduction techniques is to create a perturbation that will interfere with mycorrhizal formation, although not necessarily eliminating any component group within the inoculum. Such an approach allows the establishment of different degrees of mycorrhizal formation between treatments and the study of relative effects.
Frequently the basic techniques used to achieve complete sterilization or just an inoculum reduction may be similar but the desired outcome is accomplished by adjustments of the dosage or intensity of the treatment. The ultimate choice of methodology for establishing an adequate non-mycorrhizal control depends on the design of the particular experiments, the facilities available and the amount of soil requiring treatment
Pain relief in labour: a qualitative study to determine how to support women to make decisions about pain relief in labour
Background
Engagement in decision making is a key priority of modern healthcare. Women are encouraged to make decisions about pain relief in labour in the ante-natal period based upon their expectations of what labour pain will be like. Many women find this planning difficult. The aim of this qualitative study was to explore how women can be better supported in preparing for, and making, decisions during pregnancy and labour regarding pain management.
Methods
Semi-structured interviews were conducted with 13 primiparous and 10 multiparous women at 36 weeks of pregnancy and again within six weeks postnatally. Data collection and analysis occurred concurrently to identify key themes.
Results
Three main themes emerged from the data. Firstly, during pregnancy women expressed a degree of uncertainty about the level of pain they would experience in labour and the effect of different methods of pain relief. Secondly, women reflected on how decisions had been made regarding pain management in labour and the degree to which they had felt comfortable making these decisions. Finally, women discussed their perceived levels of control, both desired and experienced, over both their bodies and the decisions they were making.
Conclusion
This study suggests that the current approach of antenatal preparation in the NHS, of asking women to make decisions antenatally for pain relief in labour, needs reviewing. It would be more beneficial to concentrate efforts on better informing women and on engaging them in discussions around their values, expectations and preferences and how these affect each specific choice rather than expecting them to make to make firm decisions in advance of such an unpredictable event as labour
Principles of genetic circuit design
Cells navigate environments, communicate and build complex patterns by initiating gene expression in response to specific signals. Engineers seek to harness this capability to program cells to perform tasks or create chemicals and materials that match the complexity seen in nature. This Review describes new tools that aid the construction of genetic circuits. Circuit dynamics can be influenced by the choice of regulators and changed with expression 'tuning knobs'. We collate the failure modes encountered when assembling circuits, quantify their impact on performance and review mitigation efforts. Finally, we discuss the constraints that arise from circuits having to operate within a living cell. Collectively, better tools, well-characterized parts and a comprehensive understanding of how to compose circuits are leading to a breakthrough in the ability to program living cells for advanced applications, from living therapeutics to the atomic manufacturing of functional materials.National Institute of General Medical Sciences (U.S.) (Grant P50 GM098792)National Institute of General Medical Sciences (U.S.) (Grant R01 GM095765)National Science Foundation (U.S.). Synthetic Biology Engineering Research Center (EEC0540879)Life Technologies, Inc. (A114510)National Science Foundation (U.S.). Graduate Research FellowshipUnited States. Office of Naval Research. Multidisciplinary University Research Initiative (Grant 4500000552
Instrumental methods and challenges in quantifying polybrominated diphenyl ethers in environmental extracts: a review
Increased interest in the fate, transport and toxicity of polybrominated diphenyl ethers (PBDEs) over the past few years has led to a variety of studies reporting different methods of analysis for these persistent organic pollutants. Because PBDEs encompass a range of vapor pressures, molecular weights and degrees of bromine substitution, various analytical methods can lead to discrimination of some PBDE congeners. Recent improvements in injection techniques and mass spectrometer ionization methods have led to a variety of options to determine PBDEs in environmental samples. The purpose of this paper is therefore to review the available literature describing the advantages and disadvantages in choosing an injection technique, gas chromatography column and detector. Additional discussion is given to the challenges in measuring PBDEs, including potential chromatographic interferences and the lack of commercial standards for higher brominated congeners, which provides difficulties in examining degradation and debromination of BDE congeners, particularly for BDE 209
Attitudes toward evidence-based clinical practice among doctors of chiropractic with diplomate-level training in orthopedics
Role of AMP-Activated Protein Kinase on Steroid Hormone Biosynthesis in Adrenal NCI-H295R Cells
Regulation of human androgen biosynthesis is poorly understood. However, detailed knowledge is needed to eventually solve disorders with androgen dysbalance. We showed that starvation growth conditions shift steroidogenesis of human adrenal NCI-H295R cells towards androgen production attributable to decreased HSD3B2 expression and activity and increased CYP17A1 phosphorylation and 17,20-lyase activity. Generally, starvation induces stress and energy deprivation that need to be counteracted to maintain proper cell functions. AMP-activated protein kinase (AMPK) is a master energy sensor that regulates cellular energy balance. AMPK regulates steroidogenesis in the gonad. Therefore, we investigated whether AMPK is also a regulator of adrenal steroidogenesis. We hypothesized that starvation uses AMPK signaling to enhance androgen production in NCI-H295R cells. We found that AMPK subunits are expressed in NCI-H295 cells, normal adrenal tissue and human as well as pig ovary cells. Starvation growth conditions decreased phosphorylation, but not activity of AMPK in NCI-H295 cells. In contrast, the AMPK activator 5-aminoimidazole-4-carboxamide (AICAR) increased AMPKα phosphorylation and increased CYP17A1-17,20 lyase activity. Compound C (an AMPK inhibitor), directly inhibited CYP17A1 activities and can therefore not be used for AMPK signaling studies in steroidogenesis. HSD3B2 activity was neither altered by AICAR nor compound C. Starvation did not affect mitochondrial respiratory chain function in NCI-H295R cells suggesting that there is no indirect energy effect on AMPK through this avenue. In summary, starvation-mediated increase of androgen production in NCI-H295 cells does not seem to be mediated by AMPK signaling. But AMPK activation can enhance androgen production through a specific increase in CYP17A1-17,20 lyase activity
- …
