1,839 research outputs found

    Studies of multi-parton interactions in photon+jets events at D0

    Full text link
    We consider sample of inclusive photon+3jet events collected by the D0 experiment. The double parton fraction and effective cross section sigma_eff, a process-independent scale parameter related to the parton density inside the nucleon, are measured in three intervals of the second (ordered in pT) jet transverse momentum pT_jet2. Also we measured cross sections as a function of the angle in the plane transverse to the beam direction between the transverse momentum (of the photon+leading jet system and pT of the other jet for photon+2jet, or pT sum of the two other jets for photon+3jet events. The results are compared to different models of multiple parton interactions (MPI) in the PYTHIA and SHERPA Monte Carlo generators.Comment: 4 pages, 9 figure

    New developments in measurements of CP violation

    Get PDF
    We present several alternative techniques used by the BaBar Collaboration in order to measure the Unitarity Triangle angle gamma. We also present the results of two searches designed to improve the measurements of sin(2beta) using penguin B decay modes by reducing the hadronic corrections uncertainties.Comment: 6 pages, 4 figures, Contribution to Moriond ElectroWeak 2006 Proceeding

    Searches for Charginos and Neutralinos with the D0 Detector

    Full text link
    Within the framework of supersymmetry, charginos and/or neutralinos are often the preferred topics of searches for experimental evidence. This is due to the facts that in much of parameter space they are the lightest supersymmetric partners and they offer unique final states to separate from standard model backgrounds. The D0 experiment has performed several recent searches including the traditional trilepton final state and a decay chain involving dark photons.Comment: To be published in the proceedings of DPF-2009, Detroit, MI, July 2009, eConf C09072

    Electron in a transverse harmonic cavity

    Full text link
    We employ Hamiltonian light-front quantum field theory in a basis function approach to solve the non-perturbative problem of an electron in a strong scalar transverse confining potential. We evaluate both the invariant mass spectra and the anomalous magnetic moment of the lowest state for this two-scale system. The weak external field limit of the anomalous magnetic moment agrees with the result of QED perturbation theory within the anticipated accuracy.Comment: 4 pages, 3 figures, published versio

    On the influence of the cosmological constant on gravitational lensing in small systems

    Full text link
    The cosmological constant Lambda affects gravitational lensing phenomena. The contribution of Lambda to the observable angular positions of multiple images and to their amplification and time delay is here computed through a study in the weak deflection limit of the equations of motion in the Schwarzschild-de Sitter metric. Due to Lambda the unresolved images are slightly demagnified, the radius of the Einstein ring decreases and the time delay increases. The effect is however negligible for near lenses. In the case of null cosmological constant, we provide some updated results on lensing by a Schwarzschild black hole.Comment: 8 pages, 1 figure; v2: extended discussion on the lens equation, references added, results unchanged, in press on PR

    A Method for the Precision Mass Measurement of the Stop Quark at the International Linear Collider

    Get PDF
    Many supersymmetric models predict new particles within the reach of the next generation of colliders. For an understanding of the model structure and the mechanism(s) of symmetry breaking, it is important to know the masses of the new particles precisely. In this article the measurement of the mass of the scalar partner of the top quark (stop) at an e+e- collider is studied. A relatively light stop is motivated by attempts to explain electroweak baryogenesis and can play an important role in dark matter relic density. A method is presented which makes use of cross-section measurements near the pair-production threshold as well as at higher center-of-mass energies. It is shown that this method not only increases the statistical precision, but also greatly reduces the systematic uncertainties, which can be important. Numerical results are presented, based on a realistic event simulation, for two signal selection strategies: using conventional selection cuts, and using an Iterative Discriminant Analysis (IDA). Our studies indicate that a precision of \Delta\mstop = 0.42 GeV can be achieved, representing a major improvement over previous studies. While the analysis of stops is particularly challenging due to the possibility of stop hadronization, the general procedure could be applied to the mass measurement of other particles as well. We also comment on the potential of the IDA to discover a stop quark in this scenario, and we revisit the accuracy of the theoretical predictions for the neutralino relic densityComment: 41 pages, 14 figures, in JHEP forma

    The one-loop six-dimensional hexagon integral with three massive corners

    Full text link
    We compute the six-dimensional hexagon integral with three non-adjacent external masses analytically. After a simple rescaling, it is given by a function of six dual conformally invariant cross-ratios. The result can be expressed as a sum of 24 terms involving only one basic function, which is a simple linear combination of logarithms, dilogarithms, and trilogarithms of uniform degree three transcendentality. Our method uses differential equations to determine the symbol of the function, and an algorithm to reconstruct the latter from its symbol. It is known that six-dimensional hexagon integrals are closely related to scattering amplitudes in N=4 super Yang-Mills theory, and we therefore expect our result to be helpful for understanding the structure of scattering amplitudes in this theory, in particular at two loops.Comment: 15 pages, 2 figure

    CW high intensity non-scaling FFAG proton drivers

    Full text link
    Accelerators are playing increasingly important roles in basic science, technology, and medicine including nuclear power, industrial irradiation, material science, and neutrino production. Proton and light-ion accelerators in particular have many research, energy and medical applications, providing one of the most effective treatments for many types of cancer. Ultra high-intensity and high-energy (GeV) proton drivers are a critical technology for accelerator-driven sub-critical reactors (ADS) and many HEP programs (Muon Collider). These high-intensity GeV-range proton drivers are particularly challenging, encountering duty cycle and space-charge limits in the synchrotron and machine size concerns in the weaker-focusing cyclotrons; a 10-20 MW proton driver is not presently considered technically achievable with conventional re-circulating accelerators. One, as-yet, unexplored re-circulating accelerator, the Fixed-field Alternating Gradient, or FFAG, is an attractive alternative to the cyclotron. Its strong focusing optics are expected to mitigate space charge effects, and a recent innovation in design has coupled stable tunes with isochronous orbits, making the FFAG capable of fixed-frequency, CW acceleration, as in the classical cyclotron. This paper reports on these new advances in FFAG accelerator technology and references advanced modeling tools for fixed-field accelerators developed for and unique to the code COSY INFINITY.Comment: 3 pp. Particle Accelerator, 24th Conference (PAC'11) 2011. 28 Mar - 1 Apr 2011. New York, US

    A Multi-Code Analysis Toolkit for Astrophysical Simulation Data

    Full text link
    The analysis of complex multiphysics astrophysical simulations presents a unique and rapidly growing set of challenges: reproducibility, parallelization, and vast increases in data size and complexity chief among them. In order to meet these challenges, and in order to open up new avenues for collaboration between users of multiple simulation platforms, we present yt (available at http://yt.enzotools.org/), an open source, community-developed astrophysical analysis and visualization toolkit. Analysis and visualization with yt are oriented around physically relevant quantities rather than quantities native to astrophysical simulation codes. While originally designed for handling Enzo's structure adaptive mesh refinement (AMR) data, yt has been extended to work with several different simulation methods and simulation codes including Orion, RAMSES, and FLASH. We report on its methods for reading, handling, and visualizing data, including projections, multivariate volume rendering, multi-dimensional histograms, halo finding, light cone generation and topologically-connected isocontour identification. Furthermore, we discuss the underlying algorithms yt uses for processing and visualizing data, and its mechanisms for parallelization of analysis tasks.Comment: 18 pages, 6 figures, emulateapj format. Resubmitted to Astrophysical Journal Supplement Series with revisions from referee. yt can be found at http://yt.enzotools.org
    corecore