1,361 research outputs found

    Constrained LQR Using Online Decomposition Techniques

    Get PDF
    This paper presents an algorithm to solve the infinite horizon constrained linear quadratic regulator (CLQR) problem using operator splitting methods. First, the CLQR problem is reformulated as a (finite-time) model predictive control (MPC) problem without terminal constraints. Second, the MPC problem is decomposed into smaller subproblems of fixed dimension independent of the horizon length. Third, using the fast alternating minimization algorithm to solve the subproblems, the horizon length is estimated online, by adding or removing subproblems based on a periodic check on the state of the last subproblem to determine whether it belongs to a given control invariant set. We show that the estimated horizon length is bounded and that the control sequence computed using the proposed algorithm is an optimal solution of the CLQR problem. Compared to state-of-the-art algorithms proposed to solve the CLQR problem, our design solves at each iteration only unconstrained least-squares problems and simple gradient calculations. Furthermore, our technique allows the horizon length to decrease online (a useful feature if the initial guess on the horizon is too conservative). Numerical results on a planar system show the potential of our algorithm.Comment: This technical report is an extended version of the paper titled "Constrained LQR Using Online Decomposition Techniques" submitted to the 2016 Conference on Decision and Contro

    The application of low pressure storage to maintain the quality of zucchinis

    Get PDF
    Zucchini (Cucurbita pepo var. cylindrica) were stored at low pressure (4 kPa) at 10°C at 100% relative humidity for 11 days. Fruit quality was examined upon removal and after being transferred to normal atmosphere (101 kPa) at 20°C for three days. Zucchinis stored at low pressure exhibited a 50% reduction in stem-end browning compared with fruit stored at atmospheric pressure (101 kPa) at 10°C. The benefit of low pressure treatment was maintained after the additional three days storage at normal atmospheric pressure at 20°C. Indeed, low pressure treated fruit transferred to regular atmosphere 20°C for three days possessed a significantly lower incidence of postharvest rot compared to fruit stored at regular atmospheric pressure at 10°C. Zucchinis stored at low pressure showed higher levels of acceptability (28% and 36%, respectively) compared to fruit stored at regular atmospheres at 10°C for both assessment times.<br/

    Screening the effect of four ultrasound-assisted extraction parameters on hesperidin and phenolic acid content of aqueous citrus pomace extracts

    Get PDF
    Polyphenols of citrus by-products, due to their antioxidant and antimicrobial activities, could be valorized by pharmaceutical and food industries, adding a value to the citrus processing companies. A number of studies have investigated the effect of ultrasound-assisted extraction (UAE) conditions on the recovery of phenolics derived from citrus waste using both organic solvents or mixed aqueous solvent systems. To maximize efficiency, UAE conditions should be tailored to the physical parameters of the solvent(s) employed. The aim of this study was to investigate the effect of four UAE parameters: particle size (1.40–2.80 mm), extraction time (10–60 min), extraction temperature (23–50 °C) and ultrasonic power (150–250 W) on the simultaneous recovery of p-coumaric acid, caffeic acid, chlorogenic acid, and hesperidin from citrus waste using pure water as a solvent. High-performance liquid chromatography (HPLC) was employed for the identification and quantification of the cited compounds. Particle size was determined to be an important parameter affecting compound recovery, with the exception of chlorogenic acid. A particle size of 1.40 mm resulted in the highest recovery of p-coumaric and caffeic acids (0.25 and 0.58 mg/g, respectively), while higher hesperidin yields were achieved from the particle sizes of 2.00 and 1.40 mm (6.44 and 6.27 mg/g, respectively). Extraction temperature significantly affected only the recovery of the flavanone glycoside (P&lt;0.05). As the extraction temperature increased from 30 to 50 °C the recovery of hesperidin increased from 6.59 to 7.84 mg/g, respectively. Neither extraction time nor ultrasonic power significantly affected the recovery of any individual phenolic compound

    Development and application of rice starch based edible coating to improve the postharvest storage potential and quality of plum fruit (<i>Prunus salicina</i>)

    Get PDF
    The study investigated the possibility of enhancing the shelf life of plum fruit coated with rice starch-ι-carrageenan (RS-ι-car) composite coating blended with sucrose fatty acid esters (FAEs). Film solution (starch 3%, carrageenan 1.5% and FAEs 2%) was prepared by mixing the ingredients and properties of stand-alone films (physical, mechanical, barrier and surface morphology) were studied before applying the coating on fruit surface. Fruit were stored at 20 °C for 3 weeks and analyzed for weight loss, ethylene production, respiration rate, color change, firmness, and titratable acidity (TA) and soluble solid content (SSC). Surface morphology of stand-alone film and fruit surface (after applying on the plum fruit) was studied using scanning electron microscopy (SEM). Phytochemical analysis was performed during the storage period and total phenolic content (TPC), total antioxidant capacity (TAC), flavonoid content (FC) and free radical scavenging activity were determined. The rice starch composite coating was shown to be effective in reducing both weight loss (WL) and respiration rate and inhibiting the endogenous ethylene production when compared to the uncoated control fruit stored at room temperature (p &lt; 0.05). TPC, TAC, FC and free radical scavenging activity was unaffected in the coated fruit throughout the storage period (p &lt; 0.05). The findings reported in this study indicate that the RS-ι-car-FAEs coating prolongs the shelf life and maintains the overall quality of plum fruit during storage and could potentially be commercialized as a new edible coating for the plum fruit industry

    Optimizing a sustainable ultrasound assisted extraction method for the recovery of polyphenols from lemon by-products:comparison with hot water and organic solvent extractions

    Get PDF
    Response surface methodology (RSM) based on a three-factor and three-level Box–Behnken design was employed for optimizing the aqueous ultrasound-assisted extraction (AUAE) conditions, including extraction time (35–45 min), extraction temperature (45–55 °C) and ultrasonic power (150–250 W), for the recovery of total phenolic content (TPC) and rutin from lemon by-products. The independent variables and their values were selected on the basis of preliminary experiments, where the effects of five extraction parameters (particle size, extraction time and temperature, ultrasonic power and sample-to-solvent ratio) on TPC and rutin extraction yields were investigated. The yields of TPC and rutin were studied using a second-order polynomial equation. The optimum AUAE conditions for TPC were extraction time of 45 min, extraction temperature of 50 °C and ultrasonic power of 250 W with a predicted value of 18.10 ± 0.24 mg GAE/g dw, while the optimum AUAE conditions for rutin were extraction time of 35 min, extraction temperature of 48 °C and ultrasonic power of 150W with a predicted value of 3.20 ± 0.12 mg/g dw. The extracts obtained at the optimum AUAE conditions were compared with those obtained by a hot water and an organic solvent conventional extraction in terms of TPC, total flavonoid content (TF) and antioxidant capacity. The extracts obtained by AUAE had the same TPC, TF and ferric reducing antioxidant power as those achieved by organic solvent conventional extraction. However, hot water extraction led to extracts with the highest flavonoid content and antioxidant capacity. Scanning electron microscopy analysis showed that all the extraction methods led to cell damage to varying extents

    Impact of different solvents on the recovery of bioactive compounds and antioxidant properties from lemon (Citrus limon L.) pomace waste

    Get PDF
    The effects of different solvents on the recovery of (i) extractable solids (ES), (ii) total phenolic compounds (TPC), (iii) total flavonoid content (TFC), (iv) vitamin C, and (v) antioxidant activity from lemon pomace waste were investigated. The results revealed that solvents significantly affected the recovery of ES, TPC, TFC, and antioxidant properties. Absolute methanol and 50% acetone resulted in the highest extraction yields of TPC, whereas absolute methanol resulted in the highest extraction of TFC, and water had the highest recovery of vitamin C. 50% ethanol, and 50% acetone had higher extraction yields for TPC, and TFC, as well as higher antioxidant activity compared with their absolute solvents and water. TPC and TFC were shown to be the major components contributing to the antioxidant activity of lemon pomace

    Pretreatment of citrus by-products affects polyphenol recovery:a review

    Get PDF
    A large amount of citrus waste is generated annually. This waste is of great economic worth, since it contains high levels of polyphenols, which have attracted scientific interest due to their potent antimicrobial and antiradical activities. Pretreatment is a crucial step that precedes the extraction process and influences the yields and quality of polyphenols. This review emphasizes the effect of different drying processes, such as freeze drying, hot-air drying, vacuum drying, microwave drying, infrared drying, and high-speed drying, on the polyphenol retention in citrus by-products. Further treatments of the dried citrus by-products for assisting the liberation of bound polyphenols are also provided and comprehensively discussed

    Effect of low-pressure storage on the quality of green capsicums (<i>Capsicum annum L.</i>)

    Get PDF
    Green capsicums (Capsicum annum L.) were stored under low pressure (4 kPa) at 10°C for 5 and 11 days with 100% RH. The results showed that the incidence of stem decay under low pressure storage for 5 and 11 days and storage at ambient atmosphere at 20°C for three days lower compared to fruits that were stored at regular atmosphere at 10°C. Fruit that had been stored at low pressure at 10°C had no symptoms of flesh rots for up to 11 days, whilst fruit which had been stored at regular atmosphere at 10°C had 6% flesh rots after 11 days storage at 10°C.There was no difference in flesh firmness and colour retention between fruits stored at low pressure and regular pressure at 10°C. Capsicums stored at low pressure had higher overall acceptability compared to fruit that were stored at regular atmosphere at 10°C. These results demonstrate the potential of low pressure storage as an effective technique to manage capsicum fruit quality, however there was no additional benefit when fruits were stored at low pressure for more than 5 days

    Combined postharvest UV-C and 1-methylcyclopropene (1-MCP) treatment, followed by storage continuously in low level of ethylene atmosphere improves the quality of Tahitian limes

    Get PDF
    The green Tahitian limes (Citrus latifolia) were exposed to 7.2 kJ m−2 UV-C and 0.5 μL L−1 1-methylcyclopropene (1-MCP) treatments both separately and in combination. After treatment, fruit were stored in ethylene free (i.e. air containing &lt; 0.005 μL L−1) or 0.1 μL L−1 ethylene at 20 °C and 100% RH. The results showed that UV-C treatment delayed skin degreening and reduced endogenous ethylene production compared to untreated control fruit, however these effects reduced over the storage time. As expected, 1-MCP inhibited ethylene production, reduced calyx abscission and retained peel greenness during the storage. Both of the combination treatments, 1-MCP + UV-C and UV-C + 1-MCP reduced endogenous ethylene production and delayed skin yellowing. In all treatments, UV-C and 1-MCP resulted in lower fruit respiration rates than untreated control fruit, however this effect diminished during 7 and 14 days storage for fruits stored in air and 0.1 μL L−1 ethylene atmosphere, respectively. There was no difference in weight loss, SSC, TA and SSC/TA ratio between the treatments and storage conditions. The results suggest that a pre-storage UV-C treatment, followed by storage at low level of ethylene improves the quality of limes, with the additional improvement when combined with 1-MCP treatment prior or after UV-C irradiation
    corecore