366 research outputs found

    Mlh1 Can Function in Antibody Class Switch Recombination Independently of Msh2

    Get PDF
    Mismatch repair proteins participate in antibody class switch recombination, although their roles are unknown. Previous nucleotide sequence analyses of switch recombination junctions indicated that the roles of Msh2 and the MutL homologues, Mlh1 and Pms2, differ. We now asked if Msh2 and Mlh1 function in the same pathway during switch recombination. Splenic B cells from mice deficient in both these proteins were induced to undergo switching in culture. The frequency of switching is reduced, similarly to that of B cells singly deficient in Msh2 or Mlh1. However, the nucleotide sequences of the Sμ-Sγ3 junctions resemble junctions from Mlh1- but not from Msh2-deficient cells, suggesting Mlh1 functions either independently of or before Msh2. The substitution mutations within S regions that are known to accompany switch recombination are increased in Msh2- and Mlh1 single-deficient cells and further increased in the double-deficient cells, again suggesting these proteins function independently in class switch recombination. The finding that MMR functions to reduce mutations in switch regions is unexpected since MMR proteins have been shown to contribute to somatic hypermutation of antibody variable region genes

    Nbs1 ChIP-Seq Identifies Off-Target DNA Double-Strand Breaks Induced by AID in Activated Splenic B Cells

    Get PDF
    Activation-induced cytidine deaminase (AID) is required for initiation of Ig class switch recombination (CSR) and somatic hypermutation (SHM) of antibody genes during immune responses. AID has also been shown to induce chromosomal translocations, mutations, and DNA double-strand breaks (DSBs) involving non-Ig genes in activated B cells. To determine what makes a DNA site a target for AID-induced DSBs, we identify off-target DSBs induced by AID by performing chromatin immunoprecipitation (ChIP) for Nbs1, a protein that binds DSBs, followed by deep sequencing (ChIP-Seq). We detect and characterize hundreds of off-target AID-dependent DSBs. Two types of tandem repeats are highly enriched within the Nbs1-binding sites: long CA repeats, which can form Z-DNA, and tandem pentamers containing the AID target hotspot WGCW. These tandem repeats are not nearly as enriched at AID-independent DSBs, which we also identified. Msh2, a component of the mismatch repair pathway and important for genome stability, increases off-target DSBs, similar to its effect on Ig switch region DSBs, which are required intermediates during CSR. Most of the off-target DSBs are two-ended, consistent with generation during G1 phase, similar to DSBs in Ig switch regions. However, a minority are one-ended, presumably due to conversion of single-strand breaks to DSBs during replication. One-ended DSBs are repaired by processes involving homologous recombination, including break-induced replication repair, which can lead to genome instability. Off-target DSBs, especially those present during S phase, can lead to chromosomal translocations, deletions and gene amplifications, resulting in the high frequency of B cell lymphomas derived from cells that express or have expressed AID

    Increased frequency of the immunoglobulin enhancer HS1,2 allele 2 in coeliac disease

    Get PDF
    Background: Coeliac disease ( CD) is characterized by increased immunological responsiveness to ingested gliadin in genetically predisposed individuals. This genetic predisposition is not completely defined. A dysregulation of immunoglobulins (Ig) is present in CD: since antiendomysium antibodies (anti-EMA) are of the IgA class. One polymorphic enhancer within the locus control region (LCR) of the immunoglobulin heavy chain cluster at the 3' of the C alpha-1 gene was investigated. The correlation of the penetrance of the four different alleles of the HS1,2-A enhancer of the LCR-1 3' to C alpha-1 in CD patients compared to a control population was analysed. Methods: A total of 115 consecutive CD outpatients, on a gluten-free diet, and 248 healthy donors, age- and sex-matched, from the same geographical area were enrolled in the study. HS1,2-A allele frequencies were investigated by nested polymerase chain reaction (PCR). Results: The frequency of allele 2 of the enhancer HS1,2-A gene was increased by 30.8% as compared to the control frequency. The frequency of homozygosity for allele 2 was significantly increased in CD patients. Crude odds ratio ( OR) showed that those with 2/2 and 2/4 ( OR 2.63, P < 0.001 and OR 2.01, P = 0.03) have a significantly higher risk of developing the disease. In contrast, allele 1/2 may represent a protective genetic factor against CD ( OR 0.52, P = 0.01). Conclusions: These data provide further evidence of a genetic predisposition in CD. Because of the Ig dysregulation in CD, the enhancer HS1,2-A may be involved in the pathogenesis

    Inducible DNA breaks in Ig S regions are dependent on AID and UNG

    Get PDF
    Class switch recombination (CSR) occurs by an intrachromosomal deletion whereby the IgM constant region gene (Cμ) is replaced by a downstream constant region gene. This unique recombination event involves formation of double-strand breaks (DSBs) in immunoglobulin switch (S) regions, and requires activation-induced cytidine deaminase (AID), which converts cytosines to uracils. Repair of the uracils is proposed to lead to DNA breaks required for recombination. Uracil DNA glycosylase (UNG) is required for most CSR activity although its role is disputed. Here we use ligation-mediated PCR to detect DSBs in S regions in splenic B cells undergoing CSR. We find that the kinetics of DSB induction corresponds with AID expression, and that DSBs are AID- and UNG-dependent and occur preferentially at G:C basepairs in WRC/GYW AID hotspots. Our results indicate that AID attacks cytosines on both DNA strands, and staggered breaks are processed to blunt DSBs at the initiating ss break sites. We propose a model to explain the types of end-processing events observed

    Shifts in targeting of class switch recombination sites in mice that lack μ switch region tandem repeats or Msh2

    Get PDF
    The mechanisms that target class switch recombination (CSR) to antibody gene switch (S) regions are unknown. Analyses of switch site locations in wild-type mice and in mice that lack the Sμ tandem repeats show shifts indicating that a 4–5-kb DNA domain (bounded upstream by the Iμ promoter) is accessible for switching independent of Sμ sequences. This CSR-accessible domain is reminiscent of the promoter-defined domains that target somatic hypermutation. Within the 4–5-kb CSR domain, the targeting of S site locations also depends on the Msh2 mismatch repair protein because Msh2-deficient mice show an increased focus of sites to the Sμ tandem repeat region. We propose that Msh2 affects S site location because sequences with few activation-induced cytidine deaminase targets generate mostly switch DNA cleavages that require Msh2-directed processing to allow CSR joining
    corecore