968 research outputs found

    Molecular hydrogen in the galaxy and galactic gamma rays

    Get PDF
    Recent surveys of 2.6 mm CO emission and 100 MeV gamma-radiation in the galactic plane reveal a striking correlation suggesting that both emissions may be primarily proportional to the line-of-sight column density of H2 in the inner galaxy. Both the gamma ray and CO data suggest a prominent ring or arm consisting of cool clouds of H2 at a galactocentric distance of approximately 5 kpc with a mean density of approximately 4 atoms/cu cm. The importance of H2 in understanding galactic gamma ray observations is also reflected in the correlation of galactic latitude distribution of gamma rays and dense dust clouds. A detailed calculation of the gamma ray flux distribution in the 0 deg to 180 deg range using the CO data to obtain the average distribution of molecular clouds in the galaxy shows that most of the enhancement in the inner galaxy is due to pion-decay radiation and the 5 kpc ring plays a major role. Detailed agreement with the gamma ray data is obtained with the additional inclusion of contributions from bremsstrahlung and Compton radiation of secondary electrons and Compton radiation from the intense radiation field near the galactic center

    The Energetic Gamma-Ray Experiment Telescope (EGRET) Science Symposium

    Get PDF
    The principle purpose of this symposium is to provide the EGRET (Energetic Gamma-Ray Experiment Telescope) scientists with an opportunity to study and improve their understanding of high energy gamma ray astronomy. The Symposium began with the galactic diffusion radiation both because of its importance in studying galactic cosmic rays, galactic structure, and dynamic balance, and because an understanding of its characteristics is important in the study of galactic sources. The galactic objects to be reviewed included pulsars, bursts, solar flares, and other galactic sources of several types. The symposium papers then proceeded outward from the Milky Way to normal galaxies, active galaxies, and the extragalactic diffuse radiation

    Comment on ``Cosmological Gamma Ray Bursts and the Highest Energy Cosmic Rays''

    Get PDF
    In a letter with the above title, published some time ago in PRL, Waxman made the interesting suggestion that cosmological gamma ray bursts (GRBs) are the source of the ultra high energy cosmic rays (UHECR). This has also been proposed independently by Milgrom and Usov and by Vietri. However, recent observations of GRBs and their afterglows and in particular recent data from the Akeno Great Air Shwoer Array (AGASA) on UHECR rule out extragalactic GRBs as the source of UHECR.Comment: Comment on a letter with the above title published by E. Waxman in PRL 75, 386 (1995). Submitted for publication in PRL/Comment

    Comment on "On the Origin of the Highest Energy Cosmic Rays"

    Get PDF
    We show that the photodisintegration of heavy cosmic ray nuclei with energies above 10^20 eV is dominated by interactions with photons from the cosmic microwave background radiation, rather than from infrared ones. This implies that the observed air shower events with energies 2-3 10^20 eV cannot originate from Fe nuclei coming from distances beyond 10 MpcComment: 1 page, 2 figure

    Constraining blazar distances with combined Fermi and TeV data: an empirical approach

    Full text link
    We discuss a method to constrain the distance of blazars with unknown redshift using combined observations in the GeV and TeV regimes. We assume that the VHE spectrum corrected for the absorption through the interaction with the Extragalactic Background Light can not be harder than the spectrum in the Fermi/LAT band. Starting from the observed VHE spectral data we derive the EBL-corrected spectra as a function of the redshift z and fit them with power laws to be compared with power law fits to the LAT data. We apply the method to all TeV blazars detected by LAT with known distance and derive an empirical law describing the relation between the upper limits and the true redshifts that can be used to estimate the distance of unknown redshift blazars. Using different EBL models leads to systematic changes in the derived upper limits. Finally, we use this relation to infer the distance of the unknown redshift blazar PKS 1424+240.Comment: 5 pages, 4 figures, accepted for publication in MNRAS, minor revisio

    Estimating the size of the cosmic-ray halo using particle distribution moments

    Get PDF
    Context: Particle transport in many astrophysical problems can be described either by the Fokker–Planck equation or by an equivalent system of stochastic differential equations. Aims: It is shown that the latter method can be applied to the problem of defining the size of the cosmic-ray galactic halo. Methods: Analytical expressions for the leading moments of the pitch-angle distribution of relativistic particles are determined. Particle scattering and escape are analyzed in terms of the moments. Results: In the case of an anisotropic distribution, the first moment leads to an expression for the halo size, identified with the particle escape from the region of strong scattering. Previous studies are generalized by analyzing the case of a strictly isotropic initial distribution. A new expression for the variance of the distribution is derived, which illustrates the anisotropization of the distribution. Conclusions: Stochastic calculus tools allow one to analyze physically motivated forms for the scattering rate, so that a detailed realistic model can be developed

    Signatures of cosmic tau-neutrinos

    Full text link
    The importance and signatures of cosmic tau--(anti)neutrinos have been studied for upward-- and downward--going μ+μ+\mu^-+\mu^+ and hadronic shower event rates relevant for present and future underground water or ice detectors, utilizing the unique and reliable ultrasmall--xx predictions of the dynamical (radiative) parton model. The upward--going μ+μ+\mu^- +\mu^+ event rates calculated just from cosmic νμ+νˉμ\nu_{\mu}+\bar{\nu}_{\mu} fluxes are sizeably enhanced by taking into account cosmic ντ+νˉτ\nu_{\tau}+ \bar{\nu}_{\tau} fluxes and their associated τ+τ+\tau^- +\tau^+ fluxes as well. The coupled transport equations for the upward--going ν()τ\stackrel{(-)}{\nu}_{\tau} flux traversing the Earth imply an enhancement of the attenuated and regenerated ν()τ\stackrel{(-)}{\nu}_{\tau} flux typically around 10410510^4-10^5 GeV with respect to the initial cosmic flux. This enhancement turns out to be smaller than obtained so far, in particular for flatter initial cosmic fluxes behaving like Eν1E_{\nu}^{-1}. Downward--going μ+μ+\mu^- +\mu^+ events and in particular the background--free and unique hadronic `double bang' and `lollipop' events allow to test downward--going cosmic ντ+νˉτ\nu_{\tau} +\bar{\nu}_{\tau} fluxes up to about 10910^9 GeV.Comment: 32 pages, 6 figures; Added reference

    Evidence for Intergalactic Absorption in the TeV Gamma-Ray Spectrum of Mkn 501

    Full text link
    The recent HEGRA observations of the blazar Mkn 501 show strong curvature in the very high energy gamma-ray spectrum. Applying the gamma-ray opacity derived from an empirically based model of the intergalactic infrared background radiation field (IIRF), to these observations, we find that the intrinsic spectrum of this source is consistent with a power-law: dN/dE~ E^-alpha with alpha=2.00 +/- 0.03 over the range 500 GeV - 20 TeV. Within current synchrotron self-Compton scenarios, the fact that the TeV spectral energy distribution of Mkn 501 does not vary with luminosity, combined with the correlated, spectrally variable emission in X-rays, as observed by the BeppoSAX and RXTE instruments, also independently implies that the intrinsic spectrum must be close to alpha=2. Thus, the observed curvature in the spectrum is most easily understood as resulting from intergalactic absorption.Comment: 7 pages, 1 figure, accepted in ApJ Letters 1999 April

    Astrophysical sources of high energy neutrinos

    Get PDF
    Several high energy, >100 GeV, neutrino telescopes are currently operating or under construction. Their main motivation is the extension of the horizon of neutrino astronomy to cosmological scales. We show that general, model independent, arguments imply that ~1 Gton detectors are required to detect cosmic high energy neutrino sources. Predictions of models of some of the leading candidate sources, gamma-ray bursts and micro-quasars, are discussed, and the question of what can be learned from neutrino observations is addressed.Comment: Invited talk, Neutrino 2002 (Munich
    corecore