968 research outputs found
Molecular hydrogen in the galaxy and galactic gamma rays
Recent surveys of 2.6 mm CO emission and 100 MeV gamma-radiation in the galactic plane reveal a striking correlation suggesting that both emissions may be primarily proportional to the line-of-sight column density of H2 in the inner galaxy. Both the gamma ray and CO data suggest a prominent ring or arm consisting of cool clouds of H2 at a galactocentric distance of approximately 5 kpc with a mean density of approximately 4 atoms/cu cm. The importance of H2 in understanding galactic gamma ray observations is also reflected in the correlation of galactic latitude distribution of gamma rays and dense dust clouds. A detailed calculation of the gamma ray flux distribution in the 0 deg to 180 deg range using the CO data to obtain the average distribution of molecular clouds in the galaxy shows that most of the enhancement in the inner galaxy is due to pion-decay radiation and the 5 kpc ring plays a major role. Detailed agreement with the gamma ray data is obtained with the additional inclusion of contributions from bremsstrahlung and Compton radiation of secondary electrons and Compton radiation from the intense radiation field near the galactic center
The Energetic Gamma-Ray Experiment Telescope (EGRET) Science Symposium
The principle purpose of this symposium is to provide the EGRET (Energetic Gamma-Ray Experiment Telescope) scientists with an opportunity to study and improve their understanding of high energy gamma ray astronomy. The Symposium began with the galactic diffusion radiation both because of its importance in studying galactic cosmic rays, galactic structure, and dynamic balance, and because an understanding of its characteristics is important in the study of galactic sources. The galactic objects to be reviewed included pulsars, bursts, solar flares, and other galactic sources of several types. The symposium papers then proceeded outward from the Milky Way to normal galaxies, active galaxies, and the extragalactic diffuse radiation
Comment on ``Cosmological Gamma Ray Bursts and the Highest Energy Cosmic Rays''
In a letter with the above title, published some time ago in PRL, Waxman made
the interesting suggestion that cosmological gamma ray bursts (GRBs) are the
source of the ultra high energy cosmic rays (UHECR). This has also been
proposed independently by Milgrom and Usov and by Vietri. However, recent
observations of GRBs and their afterglows and in particular recent data from
the Akeno Great Air Shwoer Array (AGASA) on UHECR rule out extragalactic GRBs
as the source of UHECR.Comment: Comment on a letter with the above title published by E. Waxman in
PRL 75, 386 (1995). Submitted for publication in PRL/Comment
Comment on "On the Origin of the Highest Energy Cosmic Rays"
We show that the photodisintegration of heavy cosmic ray nuclei with energies
above 10^20 eV is dominated by interactions with photons from the cosmic
microwave background radiation, rather than from infrared ones. This implies
that the observed air shower events with energies 2-3 10^20 eV cannot originate
from Fe nuclei coming from distances beyond 10 MpcComment: 1 page, 2 figure
Constraining blazar distances with combined Fermi and TeV data: an empirical approach
We discuss a method to constrain the distance of blazars with unknown
redshift using combined observations in the GeV and TeV regimes. We assume that
the VHE spectrum corrected for the absorption through the interaction with the
Extragalactic Background Light can not be harder than the spectrum in the
Fermi/LAT band. Starting from the observed VHE spectral data we derive the
EBL-corrected spectra as a function of the redshift z and fit them with power
laws to be compared with power law fits to the LAT data. We apply the method to
all TeV blazars detected by LAT with known distance and derive an empirical law
describing the relation between the upper limits and the true redshifts that
can be used to estimate the distance of unknown redshift blazars. Using
different EBL models leads to systematic changes in the derived upper limits.
Finally, we use this relation to infer the distance of the unknown redshift
blazar PKS 1424+240.Comment: 5 pages, 4 figures, accepted for publication in MNRAS, minor revisio
Estimating the size of the cosmic-ray halo using particle distribution moments
Context: Particle transport in many astrophysical problems can be described either by the Fokker–Planck equation or by an equivalent system of stochastic differential equations. Aims: It is shown that the latter method can be applied to the problem of defining the size of the cosmic-ray galactic halo. Methods: Analytical expressions for the leading moments of the pitch-angle distribution of relativistic particles are determined. Particle scattering and escape are analyzed in terms of the moments. Results: In the case of an anisotropic distribution, the first moment leads to an expression for the halo size, identified with the particle escape from the region of strong scattering. Previous studies are generalized by analyzing the case of a strictly isotropic initial distribution. A new expression for the variance of the distribution is derived, which illustrates the anisotropization of the distribution. Conclusions: Stochastic calculus tools allow one to analyze physically motivated forms for the scattering rate, so that a detailed realistic model can be developed
The Curious Adventure of the Ultrahigh Energy Cosmic Rays
These lectures discuss the mysteries involving the production and
extragalactic propagation of ultrahigh energy cosmic rays and suggested
possible solutions.Comment: Lectures given at the D. Chalonge Euroschool, Erice, Italy, November
2000, 25 pages, 7 ps figs., expanded revision with color fig.
Signatures of cosmic tau-neutrinos
The importance and signatures of cosmic tau--(anti)neutrinos have been
studied for upward-- and downward--going and hadronic shower
event rates relevant for present and future underground water or ice detectors,
utilizing the unique and reliable ultrasmall-- predictions of the dynamical
(radiative) parton model. The upward--going event rates
calculated just from cosmic fluxes are sizeably
enhanced by taking into account cosmic fluxes
and their associated fluxes as well. The coupled transport
equations for the upward--going flux traversing
the Earth imply an enhancement of the attenuated and regenerated
flux typically around GeV with respect
to the initial cosmic flux. This enhancement turns out to be smaller than
obtained so far, in particular for flatter initial cosmic fluxes behaving like
. Downward--going events and in particular the
background--free and unique hadronic `double bang' and `lollipop' events allow
to test downward--going cosmic fluxes up to
about GeV.Comment: 32 pages, 6 figures; Added reference
Evidence for Intergalactic Absorption in the TeV Gamma-Ray Spectrum of Mkn 501
The recent HEGRA observations of the blazar Mkn 501 show strong curvature in
the very high energy gamma-ray spectrum. Applying the gamma-ray opacity derived
from an empirically based model of the intergalactic infrared background
radiation field (IIRF), to these observations, we find that the intrinsic
spectrum of this source is consistent with a power-law: dN/dE~ E^-alpha with
alpha=2.00 +/- 0.03 over the range 500 GeV - 20 TeV. Within current synchrotron
self-Compton scenarios, the fact that the TeV spectral energy distribution of
Mkn 501 does not vary with luminosity, combined with the correlated, spectrally
variable emission in X-rays, as observed by the BeppoSAX and RXTE instruments,
also independently implies that the intrinsic spectrum must be close to
alpha=2. Thus, the observed curvature in the spectrum is most easily understood
as resulting from intergalactic absorption.Comment: 7 pages, 1 figure, accepted in ApJ Letters 1999 April
Astrophysical sources of high energy neutrinos
Several high energy, >100 GeV, neutrino telescopes are currently operating or
under construction. Their main motivation is the extension of the horizon of
neutrino astronomy to cosmological scales. We show that general, model
independent, arguments imply that ~1 Gton detectors are required to detect
cosmic high energy neutrino sources. Predictions of models of some of the
leading candidate sources, gamma-ray bursts and micro-quasars, are discussed,
and the question of what can be learned from neutrino observations is
addressed.Comment: Invited talk, Neutrino 2002 (Munich
- …
