38 research outputs found
Dark Matter in the Milky Way's Dwarf Spheroidal Satellites
The Milky Way's dwarf spheroidal satellites include the nearest, smallest and
least luminous galaxies known. They also exhibit the largest discrepancies
between dynamical and luminous masses. This article reviews the development of
empirical constraints on the structure and kinematics of dSph stellar
populations and discusses how this phenomenology translates into constraints on
the amount and distribution of dark matter within dSphs. Some implications for
cosmology and the particle nature of dark matter are discussed, and some
topics/questions for future study are identified.Comment: A version with full-resolution figures is available at
http://www.cfa.harvard.edu/~mwalker/mwdsph_review.pdf; 70 pages, 22 figures;
invited review article to be published in Vol. 5 of the book "Planets, Stars,
and Stellar Systems", published by Springe
Evidence-based Kernels: Fundamental Units of Behavioral Influence
This paper describes evidence-based kernels, fundamental units of behavioral influence that appear to underlie effective prevention and treatment for children, adults, and families. A kernel is a behavior–influence procedure shown through experimental analysis to affect a specific behavior and that is indivisible in the sense that removing any of its components would render it inert. Existing evidence shows that a variety of kernels can influence behavior in context, and some evidence suggests that frequent use or sufficient use of some kernels may produce longer lasting behavioral shifts. The analysis of kernels could contribute to an empirically based theory of behavioral influence, augment existing prevention or treatment efforts, facilitate the dissemination of effective prevention and treatment practices, clarify the active ingredients in existing interventions, and contribute to efficiently developing interventions that are more effective. Kernels involve one or more of the following mechanisms of behavior influence: reinforcement, altering antecedents, changing verbal relational responding, or changing physiological states directly. The paper describes 52 of these kernels, and details practical, theoretical, and research implications, including calling for a national database of kernels that influence human behavior
Evidence for a neural source of the precedence effect in sound localization
Normal-hearing human listeners and a variety of studied animal species localize sound sources accurately in reverberant environments by responding to the directional cues carried by the first-arriving sound rather than spurious cues carried by later-arriving reflections, which are not perceived discretely. This phenomenon is known as the precedence effect (PE) in sound localization. Despite decades of study, the biological basis of the PE remains unclear. Though the PE was once widely attributed to central processes such as synaptic inhibition in the auditory midbrain, a more recent hypothesis holds that the PE may arise essentially as a by-product of normal cochlear function. Here we evaluated the PE in a unique human patient population with demonstrated sensitivity to binaural information but without functional cochleae. Users of bilateral cochlear implants (CIs) were tested in a psychophysical task that assessed the number and location(s) of auditory images perceived for simulated source-echo (lead-lag) stimuli. A parallel experiment was conducted in a group of normal-hearing (NH) listeners. Key findings were as follows: 1) Subjects in both groups exhibited lead-lag fusion. 2) Fusion was marginally weaker in CI users than in NH listeners but could be augmented by systematically attenuating the amplitude of the lag stimulus to coarsely simulate adaptation observed in acoustically stimulated auditory nerve fibers. 3) Dominance of the lead in localization varied substantially among both NH and CI subjects but was evident in both groups. Taken together, data suggest that aspects of the PE can be elicited in CI users, who lack functional cochleae, thus suggesting that neural mechanisms are sufficient to produce the PE
Cerebral monitoring by means of oximetry and somatosensory evoked potentials during carotid endarterectomy
Evaluation of β-blocker therapy for long-term outcomes in patients with low ejection fraction after cardiac surgery
Current Issues in Assessing Students with Special Needs
This chapter investigates critical issues and promising trends associated with the processes and procedures for assessing students with special needs. The chapter covers issues associated with formal standardized testing, informal classroom assessment, and accommodations in testing. The future trends considered include universal screening and universal progress monitoring. These assessment procedures rely on curriculum-based measurement techniques which provide high-fidelity data that facilitates early intervention. The chapter begins by defining key issues and presenting a conceptual framework. The framework is based on the steps in the assessment process including screening, identifying, intervening, and measuring progress. A detailed investigation of the issues follows the conceptual framework. Specific issues discussed include fairness in testing, accountability, barriers faced by practitioners, and selecting appropriate accommodations. The chapter ends with a discussion of the responsibilities and challenges faced by practitioners, policy makers, and researchers in responding to the significant issues in assessing students with special needs
