1,870 research outputs found
Toward a script theory of guidance in computer-supported collaborative learning
This article presents an outline of a script theory of guidance for computer-supported collaborative learning (CSCL). With its four types of components of internal and external scripts (play, scene, role, and scriptlet) and seven principles, this theory addresses the question how CSCL practices are shaped by dynamically re-configured internal collaboration scripts of the participating learners. Furthermore, it explains how internal collaboration scripts develop through participation in CSCL practices. It emphasizes the importance of active application of subject matter knowledge in CSCL practices, and it prioritizes transactive over non-transactive forms of knowledge application in order to facilitate learning. Further, the theory explains how external collaboration scripts modify CSCL practices and how they influence the development of internal collaboration scripts. The principles specify an optimal scaffolding level for external collaboration scripts and allow for the formulation of hypotheses about the fading of external collaboration scripts. Finally, the article points towards conceptual challenges and future research questions
Detection of very-high-energy gamma-ray emission from the vicinity of PSR B1706-44 with H.E.S.S
The energetic pulsar PSR B1706-44 and the adjacent supernova remnant (SNR)
candidate G 343.1-2.3 were observed by H.E.S.S. during a dedicated
observational campaign in 2007. A new source of very-high-energy (VHE; E > 100
GeV) gamma-ray emission, HESS J1708-443, was discovered with its centroid at
RA(J2000) = 17h08m10s and Dec(J2000) = -44d21', with a statistical error of 3
arcmin on each axis. The VHE gamma-ray source is significantly more extended
than the H.E.S.S. point-spread function, with an intrinsic Gaussian width of
0.29 +/- 0.04 deg. Its energy spectrum can be described by a power law with a
photon index Gamma = 2.0 +/- 0.1 (stat) +/- 0.2 (sys). The integral flux
measured between 1-10 TeV is ~17% of the Crab Nebula flux in the same energy
range. The possible associations with PSR B1706-44 and SNR G343.1-2.3 are
discussed.Comment: 4+ pages, 2 figures; v1 submitted to ICRC Proceedings on 15 May 2009;
v2 has additional references and minor change
The H.E.S.S. central data acquisition system
The High Energy Stereoscopic System (H.E.S.S.) is a system of Imaging
Atmospheric Cherenkov Telescopes (IACTs) located in the Khomas Highland in
Namibia. It measures cosmic gamma rays of very high energies (VHE; >100 GeV)
using the Earth's atmosphere as a calorimeter. The H.E.S.S. Array entered Phase
II in September 2012 with the inauguration of a fifth telescope that is larger
and more complex than the other four. This paper will give an overview of the
current H.E.S.S. central data acquisition (DAQ) system with particular emphasis
on the upgrades made to integrate the fifth telescope into the array. At first,
the various requirements for the central DAQ are discussed then the general
design principles employed to fulfil these requirements are described. Finally,
the performance, stability and reliability of the H.E.S.S. central DAQ are
presented. One of the major accomplishments is that less than 0.8% of
observation time has been lost due to central DAQ problems since 2009.Comment: 17 pages, 8 figures, published in Astroparticle Physic
Spatially resolved X-ray spectroscopy and modeling of the nonthermal emission of the PWN in G0.9+0.1
We performed a spatially resolved spectral X-ray study of the pulsar wind
nebula (PWN) in the supernova remnant G0.9+0.1. Furthermore we modeled its
nonthermal emission in the X-ray and very high energy (VHE, E > 100 GeV)
gamma-ray regime. Using Chandra ACIS-S3 data, we investigated the east-west
dependence of the spectral properties of G0.9+0.1 by calculating hardness
ratios. We analyzed the EPIC-MOS and EPIC-pn data of two on-axis observations
of the XMM-Newton telescope and extracted spectra of four annulus-shaped
regions, centered on the region of brightest emission of the source. A radially
symmetric leptonic model was applied in order to reproduce the observed X-ray
emission of the inner part of the PWN. Using the optimized model parameter
values obtained from the X-ray analysis, we then compared the modeled inverse
Compton (IC) radiation with the published H.E.S.S. gamma-ray data. The spectral
index within the four annuli increases with growing distance to the pulsar,
whereas the surface brightness drops. With the adopted model we are able to
reproduce the characteristics of the X-ray spectra. The model results for the
VHE gamma radiation, however, strongly deviate from the H.E.S.S. data.Comment: 8 pages, 7 figures, accepted for publication in Astronomy &
Astrophysic
A multi-wavelength study of the unidentified TeV gamma-ray source HESS J1626-490
HESS J1626-490, so far only detected with the H.E.S.S. array of imaging
atmospheric Cherenkov telescopes, could not be unambiguously identified with
any source seen at lower energies. Therefore, we analyzed data from an archival
XMM-Newton observation, pointed towards HESS J1626-490, to classify detected
X-ray point-sources according to their spectral properties and their
near-infrared counterparts from the 2MASS catalog. Furthermore, we
characterized in detail the diffuse X-ray emission from a region compatible
with the extended VHE signal. To characterize the Interstellar Medium
surrounding HESS J1626-490 we analyzed CO(J=1-0) molecular line data
from the NANTEN Galactic plane survey, HI data from the Southern Galactic Plane
Survey and Spitzer data from the GLIMPSE and MIPSGAL surveys. None of the
detected X-ray point sources fulfills the energetic requirements to be
considered as the synchrotron radiation (SR) counterpart to the VHE source
assuming an Inverse Compton (IC) emission scenario. We did not detect any
diffuse X-ray excess emission originating from the region around HESS J1626-490
above the Galactic Background and the derived upper limit for the total X-ray
flux disfavors a purely leptonic emission scenario for HESS J1626-490. We found
a good morphological match between molecular and atomic gas in the -27km/s to
-18km/s line-of-sight velocity range and HESS J1626-490. The cloud has a mass
of 1.8M and is located at a mean kinematic distance of
= 1.8 kpc. Furthermore, we found a density depression in the HI gas at a
similar distance which is spatially consistent with the SNR G335.2+00.1. We
discuss various scenarios for the VHE emission, including the CO molecular
cloud being a passive target for cosmic ray protons accelerated by the nearby
SNR G335.2+00.1.Comment: 9 pages, 10 figures, A&A in press, updated to the final versio
A major electronics upgrade for the H.E.S.S. Cherenkov telescopes 1-4
The High Energy Stereoscopic System (H.E.S.S.) is an array of imaging
atmospheric Cherenkov telescopes (IACTs) located in the Khomas Highland in
Namibia. It consists of four 12-m telescopes (CT1-4), which started operations
in 2003, and a 28-m diameter one (CT5), which was brought online in 2012. It is
the only IACT system featuring telescopes of different sizes, which provides
sensitivity for gamma rays across a very wide energy range, from ~30 GeV up to
~100 TeV. Since the camera electronics of CT1-4 are much older than the one of
CT5, an upgrade is being carried out; first deployment was in 2015, full
operation is planned for 2016. The goals of this upgrade are threefold:
reducing the dead time of the cameras, improving the overall performance of the
array and reducing the system failure rate related to aging. Upon completion,
the upgrade will assure the continuous operation of H.E.S.S. at its full
sensitivity until and possibly beyond the advent of CTA. In the design of the
new components, several CTA concepts and technologies were used and are thus
being evaluated in the field: The upgraded read-out electronics is based on the
NECTAR readout chips; the new camera front- and back-end control subsystems are
based on an FPGA and an embedded ARM computer; the communication between
subsystems is based on standard Ethernet technologies. These hardware solutions
offer good performance, robustness and flexibility. The design of the new
cameras is reported here.Comment: Proceedings of the 34th International Cosmic Ray Conference, 30 July-
6 August, 2015, The Hague, The Netherland
S-COL: A Copernican turn for the development of flexibly reusable collaboration scripts
Collaboration scripts are usually implemented as parts of a particular collaborative-learning platform. Therefore, scripts of demonstrated effectiveness are hardly used with learning platforms at other sites, and replication studies are rare. The approach of a platform-independent description language for scripts that allows for easy implementation of the same script on different platforms has not succeeded yet in making the transfer of scripts feasible. We present an alternative solution that treats the problem as a special case of providing support on top of diverse Web pages: In this case, the challenge is to trigger support based on the recognition of a Web page as belonging to a specific type of functionally equivalent pages such as the search query form or the results page of a search engine. The solution suggested has been implemented by means of a tool called S-COL (Scripting for Collaborative Online Learning) and allows for the sustainable development of scripts and scaffolds that can be used with a broad variety of content and platforms. The tool’s functions are described. In order to demonstrate the feasibility and ease of script reuse with S-COL, we describe the flexible re-implementation of a collaboration script for argumentation in S-COL and its adaptation to different learning platforms. To demonstrate that a collaboration script implemented in S-COL can actually foster learning, an empirical study about the effects of a specific script for collaborative online search on learning activities is presented. The further potentials and the limitations of the S-COL approach are discussed
Analyzing collaborative learning processes automatically
In this article we describe the emerging area of text classification research focused on the problem of collaborative learning process analysis both from a broad perspective and more specifically in terms of a publicly available tool set called TagHelper tools. Analyzing the variety of pedagogically valuable facets of learners’ interactions is a time consuming and effortful process. Improving automated analyses of such highly valued processes of collaborative learning by adapting and applying recent text classification technologies would make it a less arduous task to obtain insights from corpus data. This endeavor also holds the potential for enabling substantially improved on-line instruction both by providing teachers and facilitators with reports about the groups they are moderating and by triggering context sensitive collaborative learning support on an as-needed basis. In this article, we report on an interdisciplinary research project, which has been investigating the effectiveness of applying text classification technology to a large CSCL corpus that has been analyzed by human coders using a theory-based multidimensional coding scheme. We report promising results and include an in-depth discussion of important issues such as reliability, validity, and efficiency that should be considered when deciding on the appropriateness of adopting a new technology such as TagHelper tools. One major technical contribution of this work is a demonstration that an important piece of the work towards making text classification technology effective for this purpose is designing and building linguistic pattern detectors, otherwise known as features, that can be extracted reliably from texts and that have high predictive power for the categories of discourse actions that the CSCL community is interested in
- …
