278 research outputs found
Design and fabrication of a centrifugally driven microfluidic disk for fully integrated metabolic assays on whole blood
For the first time, we present a novel and fully integrated centrifugal microfluidic “ lab-on-a-disk” for rapid metabolic assays in human whole blood. All essential steps comprising blood sampling, metering, plasma extraction and the final optical detection are conducted within t = 150 s in passive structures integrated on one disposable disk. Our technology features a novel plasma extraction structure (V = 500 nL, CV < 5%) without using any hydrophobic microfluidics where the purified plasma (cRBC< 0.11%) is centrifugally separated and subsequently extracted through a capillarily primed extraction channel into the detection chamber. While this capillary extraction requires precisely defined, narrow micro-structures, the reactive mixing and detection is most efficient within larger cavities. The corresponding manufacturing technique of these macro- and micro structures in the range of 30 µ m to 1000 µ m is also presented for the first time: A novel, cost-efficient hybrid prototyping technique of a multiscale epoxy master for subsequent hot embossing of polymer disks
An Analysis of the Pricing of Traits in the U.S. Corn Seed Market
This paper investigates the pricing of patented traits in the U.S. hybrid corn seed market under imperfect competition. In a multiproduct context, we first examine how substitution/complementarity relationships among products can affect pricing. This is used to motivate multi-product generalizations of the Herfindahl-Hirschman index (GHHI) capturing cross-market effects of imperfect competition on bundle pricing. The GHHI model is applied to pricing of conventional and patented biotech seeds in the US from 2000-2007. One major finding is that standard component pricing in biotech traits is soundly rejected in favor of subadditive bundle pricing. The econometric estimates show how changes in market structures (as measured by both own- and cross-Herfindahl indexes) affect U.S. corn seed prices.
Optical beam guidance in monolithic polymer chips for miniaturized colorimetric assays
For the first time, we present a simple and robust optical concept to enable precise and sensitive read-out of colorimetric assays in flat lab-on-a-chip devices. The optical guidance of the probe beam through an incorporated measurement chamber to the detector is based on the total internal reflection at V-grooves in the polymer chip. This way, the optical path length through the flat measurement chamber and thus the performance of the measurements are massively enhanced compared to direct (perpendicular) beam incidence. This is demonstrated by a chip-based, colorimetric glucose-assay on serum. Outstanding features are an excellent reproducibility (CV= 1.91 %), a competitive lower limit of detection (cmin = 124 μM), and a high degree of linearity (R2 = 0.998) within a working range extending over nearly three orders of magnitude
Enhanced absorption in tandem solar cells by applying hydrogenated In2O3 as electrode
To realize the high efficiency potential of perovskite/chalcopyrite tandem
solar cells in modules, hydrogenated In2O3 (IO:H) as electrode is
investigated. IO:H with an electron mobility of 100 cm2 V−1 s−1 is
demonstrated. Compared to the conventional Sn doped In2O3 (ITO), IO:H exhibits
a decreased electron concentration and leads to almost no sub-bandgap
absorption up to the wavelength of 1200 nm. Without a trade-off between
transparency and lateral resistance in the IO:H electrode, the tandem cell
keeps increasing in efficiency as the IO:H thickness increases and
efficiencies above 22% are calculated. In contrast, the cells with ITO as
electrode perform much worse due to the severe parasitic absorption in ITO.
This indicates that IO:H has the potential to lead to high efficiencies, which
is otherwise constrained by the parasitic absorption in conventional
transparent conductive oxide electrode for tandem solar cells in modules
Direct hemoglobin measurement by monolithically integrated optical beam guidance
We present a concept for optical beam guidance by total internal reflection (TIR) at V-grooves as retro reflectors which are monolithically integrated on a microfluidic "lab-on-a-disk". This way, the optical path length through a measurement chamber and thus the sensitivity of colorimetric assays is massively enhanced compared to direct (perpendicular) beam incidence. With this rugged optical concept, we determine the concentration of hemoglobin (Hb) in human whole blood. Outstanding features are a high degree of linearity (R2 = 0.993) between the optical signal and the Hb together with a reproducibility of CV= 2.9 %, and a time-to-result of 100 seconds, only
Solar hydrogen evolution using metal-free photocatalytic polymeric carbon nitride/CuInS2 composites as photocathodes
Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.Polymeric carbon nitride (g-C3N4) films were synthesized on polycrystalline semiconductor CuInS2 chalcopyrite thin film electrodes by thermal polycondensation and were investigated as photocathodes for the hydrogen evolution reaction (HER) under photoelectrochemical conditions. The composite photocathode materials were compared to g-C3N4 powders and were characterized with grazing incidence X-ray diffraction and X-ray photoemission spectroscopy as well as Fourier transform infrared and Raman spectroscopies. Surface modification of polycrystalline CuInS2 semiconducting thin films with photocatalytically active g-C3N4 films revealed structural and chemical properties corresponding to the properties of g-C3N4 powders. The g-C3N4/CuInS2 composite photocathode material generates a cathodic photocurrent at potentials up to +0.36 V vs. RHE in 0.1 M H2SO4 aqueous solution (pH 1), which corresponds to a +0.15 V higher onset potential of cathodic photocurrent than the unmodified CuInS2 semiconducting thin film photocathodes. The cathodic photocurrent for the modified composite photocathode materials was reduced by almost 60% at the hydrogen redox potential. However, the photocurrent generated from the g-C3N4/CuInS2 composite electrode was stable for 22 h. Therefore, the presence of the polymeric g-C3N4 films composed of a network of nanoporous crystallites strongly protects the CuInS2 semiconducting substrate from degradation and photocorrosion under acidic conditions. Conversion of visible light to hydrogen by photoelectrochemical water splitting can thus be successfully achieved by g-C3N4 films synthesized on polycrystalline CuInS2 chalcopyrite electrodes.BMBF, 03IS2071D, Light2Hydroge
CENTRIFUGAL LABTUBE FOR FULLY AUTOMATED DNA EXTRACTION & LAMP AMPLIFICATION BASED ON AN INTEGRATED, LOW-COST HEATING SYSTEM
In this paper, we introduce a disposable battery-driven heating system for loop-mediated isothermal DNA amplification (LAMP) inside a centrifugally-driven DNA-extraction platform (LabTube). We demonstrate fully automated, fully closed extraction of as little as 100 DNA copies of verotoxin-producing (VTEC) Escherichia coli lysate in water, milk and apple juice in a standard laboratory centrifuge, followed by subsequent automatic LAMP amplification with an overall time-to-result of 1.5hrs. The system is disposable, fully closed and automated, requiring only a single pipetting step. The microcontroller-driven heating system is low-cost (<1$) and it can be easily parallelized. Because the heated LabSystem runs within a standard laboratory centrifuge, it is suitable for DNA extraction and amplification in low-resource areas, at production sites or sales locations
LOW-COST BACTERIAL DETECTION SYSTEM FOR FOOD SAFETY BASED ON AUTOMATED DNA EXTRACTION, AMPLIFICATION AND READOUT
To ensure food, medical and environmental safety and quality, rapid, low-cost and easy-to-use detection methods are desirable. Here, the LabSystem is introduced for integrated, automated DNA purification and amplification. It consists of a disposable, centrifugally-driven DNA purification platform (LabTube) and the subsequent amplification in a low-cost UV/vis-reader (LabReader). In this paper, food safety was chosen as the first sample application with pathogenic verotoxin-producing (VTEC) Escherichia coli (E.coli) in water and milk, and the product-spoiler Alicyclobacillus acidoterrestris (A acidoterrestris) in apple juice as sample organisms. DNA was amplified qualitatively using isothermal loop-mediated DNA amplification (LAMP) and quantitatively using real-time PCR. By optimizing manual purification protocols inside the LabTube, as little as 45 inserted DNA copies were extracted from E.coli and A.acidoterrestris lysates in real samples (milk, juice and water). To run isothermal DNA amplification (LAMP) and PCR inside the LabReader, temperature control as well as data analysis methods were implemented. Combined detection limits for DNA purification and amplification from bacteria lysates in real samples at 102-103 inserted copies were achieved. The demonstrated LabSystem runs with standard laboratory equipment and reduces hands-on times from 30min to 3min
Junction formation by Zn(O,S) sputtering yields CIGSe-based cells with efficiencies exceeding 18%
In an effort to reduce the complexity and associated production costs of
Cu(In,Ga)Se2 (CIGSe)-based solar cells, the commonly used sputtered undoped
ZnO layer has been modified to eliminate the requirement for a dedicated
buffer layer. After replacing the ZnO target with a mixed ZnO/ZnS target,
efficient solar cells could be prepared by sputtering directly onto the as-
grown CIGSe surface. This approach has now been tested with high-quality lab-
scale glass/Mo/CIGSe substrates. An efficiency of 18.3% has been independently
confirmed without any post-deposition annealing or light soaking
Centrifugal LabTube platform for fully automated DNA purification and LAMP amplification based on an integrated, low-cost heating system
This paper introduces a disposable battery-driven heating system for loop-mediated isothermal DNA amplification (LAMP) inside a centrifugally-driven DNA purification platform (LabTube). We demonstrate LabTube-based fully automated DNA purification of as low as 100 cell-equivalents of verotoxin-producing Escherichia coli (VTEC) in water, milk and apple juice in a laboratory centrifuge, followed by integrated and automated LAMP amplification with a reduction of hands-on time from 45 to 1 min. The heating system consists of two parallel SMD thick film resistors and a NTC as heating and temperature sensing elements. They are driven by a 3 V battery and controlled by a microcontroller. The LAMP reagents are stored in the elution chamber and the amplification starts immediately after the eluate is purged into the chamber. The LabTube, including a microcontroller-based heating system, demonstrates contamination-free and automated sample-to-answer nucleic acid testing within a laboratory centrifuge. The heating system can be easily parallelized within one LabTube and it is deployable for a variety of heating and electrical applications
- …
