74 research outputs found

    Climate change and freshwater zooplankton: what does it boil down to?

    Get PDF
    Recently, major advances in the climate–zooplankton interface have been made some of which appeared to receive much attention in a broader audience of ecologists as well. In contrast to the marine realm, however, we still lack a more holistic summary of recent knowledge in freshwater. We discuss climate change-related variation in physical and biological attributes of lakes and running waters, high-order ecological functions, and subsequent alteration in zooplankton abundance, phenology, distribution, body size, community structure, life history parameters, and behavior by focusing on community level responses. The adequacy of large-scale climatic indices in ecology has received considerable support and provided a framework for the interpretation of community and species level responses in freshwater zooplankton. Modeling perspectives deserve particular consideration, since this promising stream of ecology is of particular applicability in climate change research owing to the inherently predictive nature of this field. In the future, ecologists should expand their research on species beyond daphnids, should address questions as to how different intrinsic and extrinsic drivers interact, should move beyond correlative approaches toward more mechanistic explanations, and last but not least, should facilitate transfer of biological data both across space and time

    Estimating population birth rates of zooplankton when rates of egg deposition and hatching are periodic

    Full text link
    I present a general method of computing finite birth and death rates of natural zooplankton populations from changes in the age distribution of eggs and changes in population size. The method is applicable to cases in which eggs hatch periodically owing to variable rates of oviposition. When morphological criteria are used to determine the age distribution of eggs at the beginning and end of a sampling interval, egg mortality can be incorporated in estimates of population birth rate. I raised laboratory populations of Asplanchna priodonta , a common planktonic rotifer, in semicontinuous culture to evaluate my method of computing finite birth rate. The Asplanchna population became synchronized to a daily addition of food but grew by the same amount each day once steady state was achieved. The steady-state rate of growth, which can be computed from the volume-specific dilution rate of the culture, was consistent with the finite birth rate predicted from the population's egg ratio and egg age distribution.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47764/1/442_2004_Article_BF00410359.pd
    corecore