104 research outputs found
Bose-Einstein condensate coupled to a nanomechanical resonator on an atom chip
We theoretically study the coupling of Bose-Einstein condensed atoms to the
mechanical oscillations of a nanoscale cantilever with a magnetic tip. This is
an experimentally viable hybrid quantum system which allows one to explore the
interface of quantum optics and condensed matter physics. We propose an
experiment where easily detectable atomic spin-flips are induced by the
cantilever motion. This can be used to probe thermal oscillations of the
cantilever with the atoms. At low cantilever temperatures, as realized in
recent experiments, the backaction of the atoms onto the cantilever is
significant and the system represents a mechanical analog of cavity quantum
electrodynamics. With high but realistic cantilever quality factors, the strong
coupling regime can be reached, either with single atoms or collectively with
Bose-Einstein condensates. We discuss an implementation on an atom chip.Comment: published version (5 pages, 3 figures
Spectroscopy of mechanical dissipation in micro-mechanical membranes
We measure the frequency dependence of the mechanical quality factor (Q) of
SiN membrane oscillators and observe a resonant variation of Q by more than two
orders of magnitude. The frequency of the fundamental mechanical mode is tuned
reversibly by up to 40% through local heating with a laser. Several distinct
resonances in Q are observed that can be explained by coupling to membrane
frame modes. Away from the resonances, the background Q is independent of
frequency and temperature in the measured range.Comment: 4 pages, 5 figure
Resonant coupling of a Bose-Einstein condensate to a micromechanical oscillator
We report experiments in which the vibrations of a micromechanical oscillator
are coupled to the motion of Bose-condensed atoms in a trap. The interaction
relies on surface forces experienced by the atoms at about one micrometer
distance from the mechanical structure. We observe resonant coupling to several
well-resolved mechanical modes of the condensate. Coupling via surface forces
does not require magnets, electrodes, or mirrors on the oscillator and could
thus be employed to couple atoms to molecular-scale oscillators such as carbon
nanotubes.Comment: 9 pages, 4 figure
Interfacing ultracold atoms and mechanical oscillators
In this thesis I present experiments investigating controlled coupling between mechanical oscillators and ultracold atoms. I report on three different coupling mechanisms.
In a first experiment, the surface potential experienced by atoms close to the mechanical oscillator is employed to couple the oscillator motion to the center of mass (COM) motion of a trapped Bose-Einstein condensate (BEC).
The magnetic trapping potential is modified by the surface potential arising from the oscillator surface which results in a reduced trap depth. Vibration of the oscillator leads to a modulation of the trap frequency and the minimum of the trapping potential. Observing the loss of atoms from the BEC allows us to read out the amplitude of the mechanical oscillator with the atoms.
In a second experiment, we study the coupling of a mechanical membrane oscillator and thermal atoms trapped in a 1D optical lattice. The membrane is the end mirror of the lattice, and oscillation of the membrane couples to the COM mode of the atomic ensemble. Conversely, the center of mass motion of the atomic ensemble redistributes photons between the two running waves forming the 1D optical lattice, effectively modulating their power, and hence the radiation pressure acting onto the membrane.
We observe the action of the oscillating membrane onto the atoms by detecting the resulting temperature increase of the atomic ensemble in absorption imaging.
To observe the backaction of the atoms onto the mechanical oscillator, the mechanical damping is measured in experiments with and without atoms in the lattice, and we measure higher damping in the presence of atoms in agreement with the theoretical predictions. These experiments are the first demonstration of backaction of an atomic system onto a mechanical oscillator.
We investigate a third coupling mechanism, where the motion of a mechanical oscillator is coupled to the collective spin of a BEC.
The tip of a mechanical oscillator is functionalized with a magnet, which transduces the oscillators' motion into oscillations of the magnetic field. This drives spin-flip transitions of trapped atoms to untrapped motional states. The coupling strength is not limited by the square root of the mass ratio of atoms and oscillator as in the other coupling schemes discussed in this thesis.
We investigate this coupling scheme theoretically, and discuss the realization of a nanometer-sized mechanical oscillator with a magnetic island. I report on the status of the fabrication, and propose a simplified fabrication method
Vasopressin increases human risky cooperative behavior
The history of humankind is an epic of cooperation, which is ubiquitous across societies and increasing in scale. Much human cooperation occurs where it is risky to cooperate for mutual benefit because successful cooperation depends on a sufficient level of cooperation by others. Here we show that arginine vasopressin (AVP), a neuropeptide that mediates complex mammalian social behaviors such as pair bonding, social recognition and aggression causally increases humans’ willingness to engage in risky, mutually beneficial cooperation. In two double-blind experiments, male participants received either AVP or placebo intranasally and made decisions with financial consequences in the “Stag hunt” cooperation game. AVP increases humans’ willingness to cooperate. That increase is not due to an increase in the general willingness to bear risks or to altruistically help others. Using functional brain imaging, we show that, when subjects make the risky Stag choice, AVP down-regulates the BOLD signal in the left dorsolateral prefrontal cortex (dlPFC), a risk-integration region, and increases the left dlPFC functional connectivity with the ventral pallidum, an AVP receptor-rich region previously associated with AVP-mediated social reward processing in mammals. These findings show a previously unidentified causal role for AVP in social approach behavior in humans, as established by animal research
It’s all about gains: Risk preferences in problem gambling
Problem gambling is a serious socioeconomic problem involving high individual and social costs. In this article, we study risk preferences of problem gamblers including their risk attitudes in the gain and loss domains, their weighting of probabilities, and their degree of loss aversion. Our findings indicate that problem gamblers are systematically more risk taking and less sensitive toward changes in probabilities in the gain domain only. Neither their risk attitudes in the loss domain nor their degree of loss aversion are significantly different from the controls. Additional evidence for a similar degree of sensitivity toward negative outcomes is gained from skin conductance data—a psychophysiological marker for emotional arousal—in a threat-of-shock task
Recommended from our members
Initiating private-collective innovation: The fragility of knowledge sharing
Incentives to innovate are a central element of innovation theory. In the private-investment model, innovators privately fund innovation and then use intellectual property protection mechanisms to appropriate returns from these investments. In the collective-action model, public subsidy funds public goods innovations, characterized by non-rivalry and non-exclusivity in using these innovations. Recently, these models have been compounded in the private-collective innovation model where innovators privately fund public goods innovations. Private-collective innovation is illustrated in the case of open source software development. This paper contributes to the work on this model by investigating incentives that motivate innovators to share their knowledge in an initial situation, before there is a community to support the innovation process. We use game theory to predict knowledge sharing behavior in private-collective innovation, and test these predictions in a laboratory setting. The results show that knowledge sharing is a coordination game with multiple equilibria, reflecting the fragility of knowledge sharing between innovators with conflicting interests. The experimental results demonstrate important asymmetries in the fragility of knowledge sharing and, in some situations, more knowledge sharing than theoretically predicted. A behavioral analysis suggests that knowledge sharing in private-collective innovation is not only affected by material incentives, but also by social preferences such as fairness. The results offer general insights into the relationship between incentives and knowledge sharing and contribute to a better understanding of the initiation of private-collective innovation
PAR2 absence completely rescues inflammation and ichthyosis caused by altered CAP1/Prss8 expression in mouse skin
Altered serine protease activity is associated with skin disorders in humans and in mice. The serine protease channel-activating protease-1 (CAP1; also termed protease serine S1 family member 8 (Prss8)) is important for epidermal homeostasis and is thus indispensable for postnatal survival in mice, but its roles and effectors in skin pathology are poorly defined. In this paper, we report that transgenic expression in mouse skin of either CAP1/Prss8 (K14-CAP1/Prss8) or protease-activated receptor-2 (PAR2; Grhl3PAR2/+), one candidate downstream target, causes epidermal hyperplasia, ichthyosis and itching. K14-CAP1/Prss8 ectopic expression impairs epidermal barrier function and causes skin inflammation characterized by an increase in thymic stromal lymphopoietin levels and immune cell infiltrations. Strikingly, both gross and functional K14-CAP1/Prss8-induced phenotypes are completely negated when superimposed on a PAR2-null background, establishing PAR2 as a pivotal mediator of pathogenesis. Our data provide genetic evidence for PAR2 as a downstream effector of CAP1/Prss8 in a signalling cascade that may provide novel therapeutic targets for ichthyoses, pruritus and inflammatory skin diseases
Model averaging, optimal inference, and habit formation
Postulating that the brain performs approximate Bayesian inference generates principled and empirically testable models of neuronal function-the subject of much current interest in neuroscience and related disciplines. Current formulations address inference and learning under some assumed and particular model. In reality, organisms are often faced with an additional challenge-that of determining which model or models of their environment are the best for guiding behavior. Bayesian model averaging-which says that an agent should weight the predictions of different models according to their evidence-provides a principled way to solve this problem. Importantly, because model evidence is determined by both the accuracy and complexity of the model, optimal inference requires that these be traded off against one another. This means an agent's behavior should show an equivalent balance. We hypothesize that Bayesian model averaging plays an important role in cognition, given that it is both optimal and realizable within a plausible neuronal architecture. We outline model averaging and how it might be implemented, and then explore a number of implications for brain and behavior. In particular, we propose that model averaging can explain a number of apparently suboptimal phenomena within the framework of approximate (bounded) Bayesian inference, focusing particularly upon the relationship between goal-directed and habitual behavior
- …
