17 research outputs found

    Characterizing the role of Phlda3 in the development of acute toxicity and malignant transformation of hematopoietic cells induced by total-body irradiation in mice

    No full text
    Abstract The tumor suppressor p53 is a transcriptional factor that plays a crucial role in controlling acute toxicity and long-term malignant transformation of hematopoietic cells induced by genotoxic stress such as ionizing radiation. Among all transcriptional targets of p53, one gene that is robustly induced by radiation is the pleckstrin homology domain-only protein Phlda3. However, the role that Phlda3 plays in regulating the response of hematopoietic cells to radiation is unknown. Here, using isogenic cell lines and genetically engineered mouse models, we showed that radiation induces Phlda3 in human leukemia cells and mouse normal hematopoietic cells in a p53-dependent manner. However, deletion of the Phlda3 gene did not ameliorate radiation-induced acute hematologic toxicity. In addition, distinct from mice that lose p53, loss of Phlda3 did not alter the latency and incidence of radiation-induced thymic lymphoma in mice. Remarkably, whole-exome sequencing data showed that lymphomas in irradiated Phlda3 +/+ mice harbor a significantly higher number of single nucleotide variants (SNVs) and indels compared to lymphomas in irradiated Phlda3 +/− and Phlda3 −/− littermates. Together, our results indicate that although deletion of Phlda3 does not accelerate the development of radiation-induced thymic lymphoma, fewer SNVs and indels are necessary to initiate lymphomagenesis after radiation exposure when Phlda3 is silenced

    Sensitization of Vascular Endothelial Cells to Ionizing Radiation Promotes the Development of Delayed Intestinal Injury in Mice.

    No full text
    Exposure of the gastrointestinal (GI) tract to ionizing radiation can cause acute and delayed injury. However, critical cellular targets that regulate the development of radiation-induced GI injury remain incompletely understood. Here, we investigated the role of vascular endothelial cells in controlling acute and delayed GI injury after total-abdominal irradiation (TAI). To address this, we used genetically engineered mice in which endothelial cells are sensitized to radiation due to the deletion of the tumor suppressor p53. Remarkably, we found that VE-cadherin-Cre; p53FL/FL mice, in which both alleles of p53 are deleted in endothelial cells, were not sensitized to the acute GI radiation syndrome, but these mice were highly susceptible to delayed radiation enteropathy. Histological examination indicated that VE-cadherin-Cre; p53FL/FL mice that developed delayed radiation enteropathy had severe vascular injury in the small intestine, which was manifested by hemorrhage, loss of microvessels and tissue hypoxia. In addition, using dual-energy CT imaging, we showed that VE-cadherin-Cre; p53FL/FL mice had a significant increase in vascular permeability of the small intestine in vivo 28 days after TAI. Together, these findings demonstrate that while sensitization of endothelial cells to radiation does not exacerbate the acute GI radiation syndrome, it is sufficient to promote the development of late radiation enteropathy

    Activation of Notch1 drives the development of radiation-induced thymic lymphoma in p53 wild-type mice

    Full text link
    ABSTRACTMouse models of radiation-induced thymic lymphoma are widely used to study the development of radiation-induced blood cancers and to gain insights into the biology of human T-lymphoblastic leukemia/lymphoma. Here, we aimed to determine key oncogenic drivers for the development of radiation-induced thymic lymphoma by performing whole-exome sequencing using tumors and paired normal tissues from mice with and without irradiation. Thymic lymphomas from irradiated wild-type (WT), p53+/- and KrasLA1 mice were not observed to harbor significantly higher numbers of non-synonymous somatic mutations compared to thymic lymphomas from unirradiated p53-/- mice. However, we observed distinct patterns of recurrent mutations in genes that control the Notch1 signaling pathway based on the mutational status of p53. Preferential activation of Notch1 signaling in p53 WT lymphomas was also observed at the RNA and protein level. Using reporter mice for activation of the Notch1 signaling we observed that TBI enriched Notch1hi CD44+ thymocytes, which are capable of self-renewal in vivo. Mechanistically, genetic inhibition of Notch1 signaling in thymocytes prevented the formation of radiation-induced thymic lymphoma in p53 WT mice. Taken together, our results demonstrate a critical role of activated Notch1 signaling in driving multi-step carcinogenesis of thymic lymphoma following total-body irradiation in p53 WT mice.</jats:p

    Whole-Exome Sequencing of Radiation-Induced Thymic Lymphoma in Mouse Models Identifies Notch1 Activation as a Driver of p53 Wild-Type Lymphoma

    Full text link
    Abstract Mouse models of radiation-induced thymic lymphoma are widely used to study the development of radiation-induced blood cancers and to gain insights into the biology of human T-cell lymphoblastic leukemia/lymphoma. Here we aimed to identify key oncogenic drivers for the development of radiation-induced thymic lymphoma by performing whole-exome sequencing using tumors and paired normal tissues from mice with and without irradiation. Thymic lymphomas from irradiated wild-type (WT), p53+/−, and KrasLA1 mice were not observed to harbor significantly higher numbers of nonsynonymous somatic mutations compared with thymic lymphomas from unirradiated p53−/− mice. However, distinct patterns of recurrent mutations arose in genes that control the Notch1 signaling pathway based on the mutational status of p53. Preferential activation of Notch1 signaling in p53 WT lymphomas was also observed at the RNA and protein level. Reporter mice for activation of Notch1 signaling revealed that total-body irradiation (TBI) enriched Notch1hi CD44+ thymocytes that could propagate in vivo after thymocyte transplantation. Mechanistically, genetic inhibition of Notch1 signaling in immature thymocytes prevented formation of radiation-induced thymic lymphoma in p53 WT mice. Taken together, these results demonstrate a critical role of activated Notch1 signaling in driving multistep carcinogenesis of thymic lymphoma following TBI in p53 WT mice. Significance: These findings reveal the mutational landscape and key drivers in murine radiation-induced thymic lymphoma, a classic animal model that has been used to study radiation carcinogenesis for over 70 years. </jats:sec
    corecore