41 research outputs found

    Global stability of enzymatic chain of full reversible Michaelis-Menten reactions

    Get PDF
    International audienceWe consider a chain of metabolic reactions catalyzed by enzymes, of reversible Michaelis-Menten type with full dynamics, i.e. not reduced with any quasi- steady state approximations. We study the corresponding dynamical system and show its global stability if the equilibrium exists. If the system is open, the equilibrium may not exist. The main tool is monotone systems theory. Finally we study the implications of these results for the study of coupled genetic-metabolic systems

    Metabolic model integration of the bibliome, genome, metabolome and reactome of Aspergillus niger

    Get PDF
    The release of the genome sequences of two strains of Aspergillus niger has allowed systems-level investigations of this important microbial cell factory. To this end, tools for doing data integration of multi-ome data are necessary, and especially interesting in the context of metabolism. On the basis of an A. niger bibliome survey, we present the largest model reconstruction of a metabolic network reported for a fungal species. The reconstructed gapless metabolic network is based on the reportings of 371 articles and comprises 1190 biochemically unique reactions and 871 ORFs. Inclusion of isoenzymes increases the total number of reactions to 2240. A graphical map of the metabolic network is presented. All levels of the reconstruction process were based on manual curation. From the reconstructed metabolic network, a mathematical model was constructed and validated with data on yields, fluxes and transcription. The presented metabolic network and map are useful tools for examining systemwide data in a metabolic context. Results from the validated model show a great potential for expanding the use of A. niger as a high-yield production platform

    A new dawn for industrial photosynthesis

    Get PDF
    Several emerging technologies are aiming to meet renewable fuel standards, mitigate greenhouse gas emissions, and provide viable alternatives to fossil fuels. Direct conversion of solar energy into fungible liquid fuel is a particularly attractive option, though conversion of that energy on an industrial scale depends on the efficiency of its capture and conversion. Large-scale programs have been undertaken in the recent past that used solar energy to grow innately oil-producing algae for biomass processing to biodiesel fuel. These efforts were ultimately deemed to be uneconomical because the costs of culturing, harvesting, and processing of algal biomass were not balanced by the process efficiencies for solar photon capture and conversion. This analysis addresses solar capture and conversion efficiencies and introduces a unique systems approach, enabled by advances in strain engineering, photobioreactor design, and a process that contradicts prejudicial opinions about the viability of industrial photosynthesis. We calculate efficiencies for this direct, continuous solar process based on common boundary conditions, empirical measurements and validated assumptions wherein genetically engineered cyanobacteria convert industrially sourced, high-concentration CO2 into secreted, fungible hydrocarbon products in a continuous process. These innovations are projected to operate at areal productivities far exceeding those based on accumulation and refining of plant or algal biomass or on prior assumptions of photosynthetic productivity. This concept, currently enabled for production of ethanol and alkane diesel fuel molecules, and operating at pilot scale, establishes a new paradigm for high productivity manufacturing of nonfossil-derived fuels and chemicals

    Integrating Flux Balance Analysis into Kinetic Models to Decipher the Dynamic Metabolism of Shewanella oneidensis MR-1

    Get PDF
    Shewanella oneidensis MR-1 sequentially utilizes lactate and its waste products (pyruvate and acetate) during batch culture. To decipher MR-1 metabolism, we integrated genome-scale flux balance analysis (FBA) into a multiple-substrate Monod model to perform the dynamic flux balance analysis (dFBA). The dFBA employed a static optimization approach (SOA) by dividing the batch time into small intervals (i.e., ∼400 mini-FBAs), then the Monod model provided time-dependent inflow/outflow fluxes to constrain the mini-FBAs to profile the pseudo-steady-state fluxes in each time interval. The mini-FBAs used a dual-objective function (a weighted combination of “maximizing growth rate” and “minimizing overall flux”) to capture trade-offs between optimal growth and minimal enzyme usage. By fitting the experimental data, a bi-level optimization of dFBA revealed that the optimal weight in the dual-objective function was time-dependent: the objective function was constant in the early growth stage, while the functional weight of minimal enzyme usage increased significantly when lactate became scarce. The dFBA profiled biologically meaningful dynamic MR-1 metabolisms: 1. the oxidative TCA cycle fluxes increased initially and then decreased in the late growth stage; 2. fluxes in the pentose phosphate pathway and gluconeogenesis were stable in the exponential growth period; and 3. the glyoxylate shunt was up-regulated when acetate became the main carbon source for MR-1 growth

    Flux balance analysis of primary metabolism in Chlamydomonas reinhardtii

    Get PDF
    Background Photosynthetic organisms convert atmospheric carbon dioxide into numerous metabolites along the pathways to make new biomass. Aquatic photosynthetic organisms, which fix almost half of global inorganic carbon, have great potential: as a carbon dioxide fixation method, for the economical production of chemicals, or as a source for lipids and starch which can then be converted to biofuels. To harness this potential through metabolic engineering and to maximize production, a more thorough understanding of photosynthetic metabolism must first be achieved. A model algal species, C. reinhardtii, was chosen and the metabolic network reconstructed. Intracellular fluxes were then calculated using flux balance analysis (FBA). Results The metabolic network of primary metabolism for a green alga, C. reinhardtii, was reconstructed using genomic and biochemical information. The reconstructed network accounts for the intracellular localization of enzymes to three compartments and includes 484 metabolic reactions and 458 intracellular metabolites. Based on BLAST searches, one newly annotated enzyme (fructose-1,6-bisphosphatase) was added to the Chlamydomonas reinhardtii database. FBA was used to predict metabolic fluxes under three growth conditions, autotrophic, heterotrophic and mixotrophic growth. Biomass yields ranged from 28.9 g per mole C for autotrophic growth to 15 g per mole C for heterotrophic growth. Conclusion The flux balance analysis model of central and intermediary metabolism in C. reinhardtii is the first such model for algae and the first model to include three metabolically active compartments. In addition to providing estimates of intracellular fluxes, metabolic reconstruction and modelling efforts also provide a comprehensive method for annotation of genome databases. As a result of our reconstruction, one new enzyme was annotated in the database and several others were found to be missing; implying new pathways or non-conserved enzymes. The use of FBA to estimate intracellular fluxes also provides flux values that can be used as a starting point for rational engineering of C. reinhardtii. From these initial estimates, it is clear that aerobic heterotrophic growth on acetate has a low yield on carbon, while mixotrophically and autotrophically grown cells are significantly more carbon efficient

    OptForce: An Optimization Procedure for Identifying All Genetic Manipulations Leading to Targeted Overproductions

    Get PDF
    Computational procedures for predicting metabolic interventions leading to the overproduction of biochemicals in microbial strains are widely in use. However, these methods rely on surrogate biological objectives (e.g., maximize growth rate or minimize metabolic adjustments) and do not make use of flux measurements often available for the wild-type strain. In this work, we introduce the OptForce procedure that identifies all possible engineering interventions by classifying reactions in the metabolic model depending upon whether their flux values must increase, decrease or become equal to zero to meet a pre-specified overproduction target. We hierarchically apply this classification rule for pairs, triples, quadruples, etc. of reactions. This leads to the identification of a sufficient and non-redundant set of fluxes that must change (i.e., MUST set) to meet a pre-specified overproduction target. Starting with this set we subsequently extract a minimal set of fluxes that must actively be forced through genetic manipulations (i.e., FORCE set) to ensure that all fluxes in the network are consistent with the overproduction objective. We demonstrate our OptForce framework for succinate production in Escherichia coli using the most recent in silico E. coli model, iAF1260. The method not only recapitulates existing engineering strategies but also reveals non-intuitive ones that boost succinate production by performing coordinated changes on pathways distant from the last steps of succinate synthesis

    High-Yield Hydrogen Production from Starch and Water by a Synthetic Enzymatic Pathway

    Get PDF
    BACKGROUND: The future hydrogen economy offers a compelling energy vision, but there are four main obstacles: hydrogen production, storage, and distribution, as well as fuel cells. Hydrogen production from inexpensive abundant renewable biomass can produce cheaper hydrogen, decrease reliance on fossil fuels, and achieve zero net greenhouse gas emissions, but current chemical and biological means suffer from low hydrogen yields and/or severe reaction conditions. METHODOLOGY/PRINCIPAL FINDINGS: Here we demonstrate a synthetic enzymatic pathway consisting of 13 enzymes for producing hydrogen from starch and water. The stoichiometric reaction is C(6)H(10)O(5) (l)+7 H(2)O (l)→12 H(2) (g)+6 CO(2) (g). The overall process is spontaneous and unidirectional because of a negative Gibbs free energy and separation of the gaseous products with the aqueous reactants. CONCLUSIONS: Enzymatic hydrogen production from starch and water mediated by 13 enzymes occurred at 30°C as expected, and the hydrogen yields were much higher than the theoretical limit (4 H(2)/glucose) of anaerobic fermentations. SIGNIFICANCE: The unique features, such as mild reaction conditions (30°C and atmospheric pressure), high hydrogen yields, likely low production costs ($∼2/kg H(2)), and a high energy-density carrier starch (14.8 H(2)-based mass%), provide great potential for mobile applications. With technology improvements and integration with fuel cells, this technology also solves the challenges associated with hydrogen storage, distribution, and infrastructure in the hydrogen economy

    A procedure for the estimation over time of metabolic fluxes in scenarios where measurements are uncertain and/or insufficient

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>An indirect approach is usually used to estimate the metabolic fluxes of an organism: couple the available measurements with known biological constraints (e.g. stoichiometry). Typically this estimation is done under a static point of view. Therefore, the fluxes so obtained are only valid while the environmental conditions and the cell state remain stable. However, estimating the evolution over time of the metabolic fluxes is valuable to investigate the dynamic behaviour of an organism and also to monitor industrial processes. Although Metabolic Flux Analysis can be successively applied with this aim, this approach has two drawbacks: i) sometimes it cannot be used because there is a lack of measurable fluxes, and ii) the uncertainty of experimental measurements cannot be considered. The Flux Balance Analysis could be used instead, but the assumption of optimal behaviour of the organism brings other difficulties.</p> <p>Results</p> <p>We propose a procedure to estimate the evolution of the metabolic fluxes that is structured as follows: 1) measure the concentrations of extracellular species and biomass, 2) convert this data to measured fluxes and 3) estimate the non-measured fluxes using the Flux Spectrum Approach, a variant of Metabolic Flux Analysis that overcomes the difficulties mentioned above without assuming optimal behaviour. We apply the procedure to a real problem taken from the literature: estimate the metabolic fluxes during a cultivation of CHO cells in batch mode. We show that it provides a reliable and rich estimation of the non-measured fluxes, thanks to considering measurements uncertainty and reversibility constraints. We also demonstrate that this procedure can estimate the non-measured fluxes even when there is a lack of measurable species. In addition, it offers a new method to deal with inconsistency.</p> <p>Conclusion</p> <p>This work introduces a procedure to estimate time-varying metabolic fluxes that copes with the insufficiency of measured species and with its intrinsic uncertainty. The procedure can be used as an off-line analysis of previously collected data, providing an insight into the dynamic behaviour of the organism. It can be also profitable to the on-line monitoring of a running process, mitigating the traditional lack of reliable on-line sensors in industrial environments.</p

    Oxygen dependence of metabolic fluxes and energy generation of Saccharomyces cerevisiae CEN.PK113-1A

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The yeast <it>Saccharomyces cerevisiae </it>is able to adjust to external oxygen availability by utilizing both respirative and fermentative metabolic modes. Adjusting the metabolic mode involves alteration of the intracellular metabolic fluxes that are determined by the cell's multilevel regulatory network. Oxygen is a major determinant of the physiology of <it>S. cerevisiae </it>but understanding of the oxygen dependence of intracellular flux distributions is still scarce.</p> <p>Results</p> <p>Metabolic flux distributions of <it>S. cerevisiae </it>CEN.PK113-1A growing in glucose-limited chemostat cultures at a dilution rate of 0.1 h<sup>-1 </sup>with 20.9%, 2.8%, 1.0%, 0.5% or 0.0% O<sub>2 </sub>in the inlet gas were quantified by <sup>13</sup>C-MFA. Metabolic flux ratios from fractional [U-<sup>13</sup>C]glucose labelling experiments were used to solve the underdetermined MFA system of central carbon metabolism of <it>S. cerevisiae</it>.</p> <p>While ethanol production was observed already in 2.8% oxygen, only minor differences in the flux distribution were observed, compared to fully aerobic conditions. However, in 1.0% and 0.5% oxygen the respiratory rate was severely restricted, resulting in progressively reduced fluxes through the TCA cycle and the direction of major fluxes to the fermentative pathway. A redistribution of fluxes was observed in all branching points of central carbon metabolism. Yet only when oxygen provision was reduced to 0.5%, was the biomass yield exceeded by the yields of ethanol and CO<sub>2</sub>. Respirative ATP generation provided 59% of the ATP demand in fully aerobic conditions and still a substantial 25% in 0.5% oxygenation. An extensive redistribution of fluxes was observed in anaerobic conditions compared to all the aerobic conditions. Positive correlation between the transcriptional levels of metabolic enzymes and the corresponding fluxes in the different oxygenation conditions was found only in the respirative pathway.</p> <p>Conclusion</p> <p><sup>13</sup>C-constrained MFA enabled quantitative determination of intracellular fluxes in conditions of different redox challenges without including redox cofactors in metabolite mass balances. A redistribution of fluxes was observed not only for respirative, respiro-fermentative and fermentative metabolisms, but also for cells grown with 2.8%, 1.0% and 0.5% oxygen. Although the cellular metabolism was respiro-fermentative in each of these low oxygen conditions, the actual amount of oxygen available resulted in different contributions through respirative and fermentative pathways.</p
    corecore