948 research outputs found

    QCD critical point and event-by-event fluctuations in heavy ion collisions

    Get PDF
    A summary of work done in collaboration with K. Rajagopal and E. Shuryak. We show how heavy ion collision experiments, in particular, event-by-event fluctuation measurements, can lead to the discovery of the critical point on the phase diagram of QCD.Comment: 4 pages. Summary of work done in collaboration with K. Rajagopal and E. Shuryak (hep-ph/9903292). To be published in the proceedings of Quark Matter 99, Torino, Italy, May 10-14, 199

    The Phase Diagram of QCD

    Full text link
    We show that current experimental knowledge of QCD together with general model independent arguments such as continuity, universality and thermodynamic relations, as well as the information gained from various models can be used to constrain the phase diagram of QCD as a function of temperature and baryon chemical potential.Comment: 6 pages; to appear in Proceedings of the Intl Workshop on QCD at Finite Baryon Density, Bielefeld, Germany, April 199

    Non-Gaussian fluctuations near the QCD critical point

    Full text link
    We study the effect of the QCD critical point on non-Gaussian moments (cumulants) of fluctuations of experimental observables in heavy-ion collisions. We find that these moments are very sensitive to the proximity of the critical point, as measured by the magnitude of the correlation length xi. For example, the cubic central moment of multiplicity ~ xi^4.5 and the quartic cumulant ~ xi^7. We estimate the magnitude of critical point contributions to non-Gaussian fluctuations of pion and proton multiplicities.Comment: 4 pages, 3 figure

    Dirac operator as a random matrix and the quenched limit of QCD with chemical potential

    Get PDF
    The behavior of quenched QCD at nonzero chemical potential μ\mu has been a long-standing puzzle. An explicit solution is found using the random matrix approach to chiral symmetry breaking. At nonzero μ\mu the quenched QCD is not a simple n0n\to0 limit of a theory with nn quarks: a naive `replica trick' fails. A limit that leads to the quenched QCD is that of a theory with 2n2n quarks: nn quarks with original action and nn quarks with conjugate action.Comment: 3 pages, espcrc, 2 figures. Talk presented at LATTICE96(finite temperature

    Acceptance dependence of fluctuation measures near the QCD critical point

    Full text link
    We argue that a crucial determinant of the acceptance dependence of fluctuation measures in heavy-ion collisions is the range of correlations in the momentum space, e.g., in rapidity, Δycorr\Delta y_{\rm corr}. The value of Δycorr1\Delta y_{\rm corr}\sim1 for critical thermal fluctuations is determined by the thermal rapidity spread of the particles at freezeout, and has little to do with position space correlations, even near the critical point where the spatial correlation length ξ\xi becomes as large as 232-3 fm (this is in contrast to the magnitudes of the cumulants, which are sensitive to ξ\xi). When the acceptance window is large, ΔyΔycorr\Delta y\gg\Delta y_{\rm corr}, the cumulants of a given particle multiplicity, κk\kappa_k, scale linearly with Δy\Delta y, or mean multiplicity in acceptance, N\langle N\rangle, and cumulant ratios are acceptance independent. While in the opposite regime, ΔyΔycorr\Delta y\ll\Delta y_{\rm corr}, the factorial cumulants, κ^k\hat\kappa_k, scale as (Δy)k(\Delta y)^k, or Nk\langle N\rangle^k. We demonstrate this general behavior quantitatively in a model for critical point fluctuations, which also shows that the dependence on transverse momentum acceptance is very significant. We conclude that extension of rapidity coverage proposed by STAR should significantly increase the magnitude of the critical point fluctuation signatures.Comment: 9 pages, 4 figures, references adde
    corecore