4,286 research outputs found

    Volcanic eruption forecasts from accelerating rates of drumbeat long-period earthquakes

    Get PDF
    Abstract Accelerating rates of quasiperiodic “drumbeat” long‐period earthquakes (LPs) are commonly reported before eruptions at andesite and dacite volcanoes, and promise insights into the nature of fundamental preeruptive processes and improved eruption forecasts. Here we apply a new Bayesian Markov chain Monte Carlo gamma point process methodology to investigate an exceptionally well‐developed sequence of drumbeat LPs preceding a recent large vulcanian explosion at Tungurahua volcano, Ecuador. For more than 24 hr, LP rates increased according to the inverse power law trend predicted by material failure theory, and with a retrospectively forecast failure time that agrees with the eruption onset within error. LPs resulted from repeated activation of a single characteristic source driven by accelerating loading, rather than a distributed failure process, showing that similar precursory trends can emerge from quite different underlying physics. Nevertheless, such sequences have clear potential for improving forecasts of eruptions at Tungurahua and analogous volcanoes

    Structure of an archaeal PCNA1-PCNA2-FEN1 complex: elucidating PCNA subunit and client enzyme specificity.

    Get PDF
    The archaeal/eukaryotic proliferating cell nuclear antigen (PCNA) toroidal clamp interacts with a host of DNA modifying enzymes, providing a stable anchorage and enhancing their respective processivities. Given the broad range of enzymes with which PCNA has been shown to interact, relatively little is known about the mode of assembly of functionally meaningful combinations of enzymes on the PCNA clamp. We have determined the X-ray crystal structure of the Sulfolobus solfataricus PCNA1-PCNA2 heterodimer, bound to a single copy of the flap endonuclease FEN1 at 2.9 A resolution. We demonstrate the specificity of interaction of the PCNA subunits to form the PCNA1-PCNA2-PCNA3 heterotrimer, as well as providing a rationale for the specific interaction of the C-terminal PIP-box motif of FEN1 for the PCNA1 subunit. The structure explains the specificity of the individual archaeal PCNA subunits for selected repair enzyme 'clients', and provides insights into the co-ordinated assembly of sequential enzymatic steps in PCNA-scaffolded DNA repair cascades

    The structural role of elastic fibres in the cornea investigated using a mouse model for Marfan syndrome

    Get PDF
    Purpose: The presence of fibrillin-rich elastic fibers in the cornea has been overlooked in recent years. The aim of the current study was to elucidate their functional role using a mouse model for Marfan syndrome, defective in fibrillin-1, the major structural component of the microfibril bundles that constitute most of the elastic fibers. Methods: Mouse corneas were obtained from animals with a heterozygous fibrillin-1 mutation (Fbn1+/−) and compared to wild type controls. Corneal thickness and radius of curvature were calculated using optical coherence tomography microscopy. Elastic microfibril bundles were quantified and visualized in three-dimensions using serial block face scanning electron microscopy. Transmission electron microscopy was used to analyze stromal ultrastructure and proteoglycan distribution. Center-to-center average interfibrillar spacing was determined using x-ray scattering. Results: Fbn1+/− corneas were significantly thinner than wild types and displayed a higher radius of curvature. In the Fbn1+/− corneas, elastic microfibril bundles were significantly reduced in density and disorganized compared to wild-type controls, in addition to containing a higher average center-to-center collagen interfibrillar spacing in the center of the cornea. No other differences were detected in stromal ultrastructure or proteoglycan distribution between the two groups. Proteoglycan side chains appeared to colocalize with the microfibril bundles. Conclusions: Elastic fibers have an important, multifunctional role in the cornea as highlighted by the differences observed between Fbn1+/− and wild type animals. We contend that the presence of normal quantities of structurally organized elastic fibers are required to maintain the correct geometry of the cornea, which is disrupted in Marfan syndrome

    Beyond the pair: media archetypes and complex channel synergies in advertising

    Get PDF
    Prior research on advertising media mixes has mostly focused on single channels (e.g., television), pairwise cross-elasticities, or budget optimization within single campaigns. This is detached from practice where (i) marketers decide between an increasingly large number of media channels, (ii) media plans involve complex combinations of channels, and (iii) marketers manage complementarities among many channels. In this work we use Latent Class analysis to uncover tendencies in media allocations. Latent classes account for non-random selection of channels into campaigns, capture pairwise and higher-order interactions between channels, and allow for meaningful interpretation. We describe the most common media channel archetypes and estimate their relationship to the effectiveness of a set advertising campaigns on common brandrelated performance metrics. We use a dataset of 1,083 advertising campaigns from around the world run between 2008 and 2019. We find no single media mix that consistently correlates with high performance across all metrics, but clear high-performing patterns emerge for specific metrics. We find that traditional channels (TV, outdoor) often appear together with digital channels (Facebook, YouTube) in high-performing campaigns. Additionally, current marketing practices appear suboptimal, with simple strategies predicted to improve lifts by 50% or more

    Improving response rates using a monetary incentive for patient completion of questionnaires: an observational study

    Get PDF
    Background: Poor response rates to postal questionnaires can introduce bias and reduce the statistical power of a study. To improve response rates in our trial in primary care we tested the effect of introducing an unconditional direct payment of 5 pound for the completion of postal questionnaires. Methods: We recruited patients in general practice with knee problems from sites across the United Kingdom. An evidence-based strategy was used to follow-up patients at twelve months with postal questionnaires. This included an unconditional direct payment of 5 pound to patients for the completion and return of questionnaires. The first 105 patients did not receive the 5 pound incentive, but the subsequent 442 patients did. We used logistic regression to analyse the effect of introducing a monetary incentive to increase the response to postal questionnaires. Results: The response rate following reminders for the historical controls was 78.1% ( 82 of 105) compared with 88.0% ( 389 of 442) for those patients who received the 5 pound payment (diff = 9.9%, 95% CI 2.3% to 19.1%). Direct payments significantly increased the odds of response ( adjusted odds ratio = 2.2, 95% CI 1.2 to 4.0, P = 0.009) with only 12 of 442 patients declining the payment. The incentive did not save costs to the trial - the extra cost per additional respondent was almost 50 pound. Conclusion: The direct payment of 5 pound significantly increased the completion of postal questionnaires at negligible increase in cost for an adequately powered study

    Translation initiation from conserved non-AUG codons provides additional layers of regulation and coding capacity

    Get PDF
    Neurospora crassa cpc-1 and Saccharomyces cerevisiae GCN4 are homologs specifying transcription activators that drive the transcriptional response to amino acid limitation. The cpc-1 mRNA contains two upstream open reading frames (uORFs) in its >700-nucleotide (nt) 5' leader, and its expression is controlled at the level of translation in response to amino acid starvation. We used N. crassa cell extracts and obtained data indicating that cpc-1 uORF1 and uORF2 are functionally analogous to GCN4 uORF1 and uORF4, respectively, in controlling translation. We also found that the 5' region upstream of the main coding sequence of the cpc-1 mRNA extends for more than 700 nucleotides without any in-frame stop codon. For 100 cpc-1 homologs from Pezizomycotina and from selected Basidiomycota, 5' conserved extensions of the CPC1 reading frame are also observed. Multiple non-AUG near-cognate codons (NCCs) in the CPC1 reading frame upstream of uORF2, some deeply conserved, could potentially initiate translation. At least four NCCs initiated translation in vitro. In vivo data were consistent with initiation at NCCs to produce N-terminally extended N. crassa CPC1 isoforms. The pivotal role played by CPC1, combined with its translational regulation by uORFs and NCC utilization, underscores the emerging significance of noncanonical initiation events in controlling gene expression. IMPORTANCE There is a deepening and widening appreciation of the diverse roles of translation in controlling gene expression. A central fungal transcription factor, the best-studied example of which is Saccharomyces cerevisiae GCN4, is crucial for the response to amino acid limitation. Two upstream open reading frames (uORFs) in the GCN4 mRNA are critical for controlling GCN4 synthesis. We observed that two uORFs in the corresponding Neurospora crassa cpc-1 mRNA appear functionally analogous to the GCN4 uORFs. We also discovered that, surprisingly, unlike GCN4, the CPC1 coding sequence extends far upstream from the presumed AUG start codon with no other in-frame AUG codons. Similar extensions were seen in homologs from many filamentous fungi. We observed that multiple non-AUG near-cognate codons (NCCs) in this extended reading frame, some conserved, initiated translation to produce longer forms of CPC1, underscoring the significance of noncanonical initiation in controlling gene expression

    Pooled Analysis of Alcohol Dehydrogenase Genotypes and Head and Neck Cancer: A HuGE Review

    Get PDF
    Possession of the fast metabolizing alleles for alcohol dehydrogenase (ADH), ADH1B*2 and ADH1C*1, and the null allele for aldehyde dehydrogenase (ALDH), ALDH2*2, results in increased acetylaldehyde levels and is hypothesized to increase the risk of head and neck cancer. To examine this association, the authors undertook a Human Genome Epidemiology review on these three genes and a pooled analysis of published studies on ADH1C. The majority of Asians had the fast ADH1B*2 and ADH1C*1 alleles, while the majority of Caucasians had the slow ADH1B*1/1 and ADH1C*1/2 genotypes. The ALDH2*2 null allele was frequently observed among Asians, though it was rarely observed in other populations. In a pooled analysis of data from seven case-control studies with a total of 1,325 cases and 1,760 controls, an increased risk of head and neck cancer was not observed for the ADH1C*1/2 genotype (odds ratio = 1.00, 95% confidence interval: 0.81, 1.23) or the ADH1C*1/1 genotype (odds ratio = 1.14, 95% confidence interval: 0.92, 1.41). Increased relative risks of head and neck cancer were reported for the ADH1B*1/1 and ALDH2*1/2 genotypes in several studies. Recommendations for future studies include larger sample sizes and incorporation of relevant ADH and ALDH genes simultaneously, as well as other genes. These considerations suggest the potential for the organization of a consortium of investigators conducting studies in this fiel

    O- vs. N-protonation of 1-dimethylaminonaphthalene-8-ketones: formation of a peri N–C bond or a hydrogen bond to the pi-electron density of a carbonyl group

    Get PDF
    X-ray crystallography and solid-state NMR measurements show that protonation of a series of 1-dimethylaminonaphthalene-8-ketones leads either to O protonation with formation of a long N–C bond (1.637–1.669 Å) between peri groups, or to N protonation and formation of a hydrogen bond to the π surface of the carbonyl group, the latter occurring for the larger ketone groups (C(O)R, R = t-butyl and phenyl). Solid state 15N MAS NMR studies clearly differentiate the two series, with the former yielding significantly more deshielded resonances. This is accurately corroborated by DFT calculation of the relevant chemical shift parameters. In the parent ketones X-ray crystallography shows that the nitrogen lone pair is directed towards the carbonyl group in all cases
    corecore