1 research outputs found
Critical droplets in Metastable States of Probabilistic Cellular Automata
We consider the problem of metastability in a probabilistic cellular
automaton (PCA) with a parallel updating rule which is reversible with respect
to a Gibbs measure. The dynamical rules contain two parameters and
which resemble, but are not identical to, the inverse temperature and external
magnetic field in a ferromagnetic Ising model; in particular, the phase diagram
of the system has two stable phases when is large enough and is
zero, and a unique phase when is nonzero. When the system evolves, at small
positive values of , from an initial state with all spins down, the PCA
dynamics give rise to a transition from a metastable to a stable phase when a
droplet of the favored phase inside the metastable phase reaches a
critical size. We give heuristic arguments to estimate the critical size in the
limit of zero ``temperature'' (), as well as estimates of the
time required for the formation of such a droplet in a finite system. Monte
Carlo simulations give results in good agreement with the theoretical
predictions.Comment: 5 LaTeX picture
