3,406 research outputs found

    Voltage-independent SK-channel dysfunction causes neuronal hyperexcitability in the hippocampus of Fmr1 knock-out mice

    Get PDF
    Neuronal hyperexcitability is one of the major characteristics of fragile X syndrome (FXS), yet the molecular mechanisms of this critical dysfunction remain poorly understood. Here we report a major role of voltage-independent potassium (

    Resonance Raman Detection of the Hydroperoxo Intermediate in the Cytochrome P450 Enzymatic Cycle

    Get PDF
    The resonance Raman spectra of the hydroperoxo complex of camphor-bound CYP101 have been obtained by cryoradiolytic reduction of the oxygenated ferrous form that had been rapidly frozen in water/glycerol frozen solution; EPR spectroscopy was employed to confirm the identity of the trapped intermediate. The ν(O−O) mode, appearing at 799 cm-1, is observed for the first time in a peroxo-heme adduct. It is assigned unambiguously by employing isotopomeric mixtures of oxygen gas containing 50% 16O18O, confirming the presence of an intact O−O fragment. The ν(Fe−O) mode is observed at 559 cm-1 (H2O). Furthermore, both modes shift down by 3 cm-1, documenting the formulation as a hydroperoxo complex, in agreement with EPR data

    Assessing Short‐Term Impacts of Management Practices on N2O Emissions From Diverse Mediterranean Agricultural Ecosystems Using a Biogeochemical Model

    Get PDF
    Croplands are important sources of nitrous oxide (N2O) emissions. The lack of both long‐term field measurements and reliable methods for extrapolating these measurements has resulted in a large uncertainty in quantifying and mitigating N2O emissions from croplands. This is especially relevant in regions where cropping systems and farming management practices (FMPs) are diverse. In this study, a process‐based biogeochemical model, DeNitrification‐DeComposition (DNDC), was tested against N2O measurements from five cropping systems (alfalfa, wheat, lettuce, vineyards, and almond orchards) representing diverse environmental conditions and FMPs. The model tests indicated that DNDC was capable of predicting seasonal and annual total N2O emissions from these cropping systems, and the model\u27s performance was better than the Intergovernmental Panel on Climate Change emission factor approach. DNDC also captured the impacts on N2O emissions of nitrogen fertilization for wheat and lettuce, of stand age for alfalfa, as well as the spatial variability of N2O fluxes in vineyards and orchards. DNDC overestimated N2O fluxes following some heavy rainfall events. To reduce the biases of simulating N2O fluxes following heavy rainfall, studies should focus on clarifying mechanisms controlling impacts of environmental factors on denitrification. DNDC was then applied to assess the impacts on N2O emissions of FMPs, including tillage, fertilization, irrigation, and management of cover crops. The practices that can mitigate N2O emissions include reduced or no tillage, reduced N application rates, low‐volume irrigation, and cultivation of nonleguminous cover crops. This study demonstrates the necessity and potential of utilizing process‐based models to quantify N2O emissions from regions with highly diverse cropping systems

    The Differential Role of Human Cationic Trypsinogen (PRSS1) p.R122H Mutation in Hereditary and Nonhereditary Chronic Pancreatitis: A Systematic Review and Meta-Analysis.

    Get PDF
    Background:Environmental factors and genetic mutations have been increasingly recognized as risk factors for chronic pancreatitis (CP). The PRSS1 p.R122H mutation was the first discovered to affect hereditary CP, with 80% penetrance. We performed here a systematic review and meta-analysis to evaluate the associations of PRSS1 p.R122H mutation with CP of diverse etiology. Methods:The PubMed, EMBASE, and MEDLINE database were reviewed. The pooled odds ratio (OR) with 95% confidence intervals was used to evaluate the association of p.R122H mutation with CP. Initial analysis was conducted with all etiologies of CP, followed by a subgroup analysis for hereditary and nonhereditary CP, including alcoholic or idiopathic CP. Results:A total of eight case-control studies (1733 cases and 2415 controls) were identified and included. Overall, PRSS1 p.R122H mutation was significantly associated with an increased risk of CP (OR = 4.78[1.13-20.20]). Further analysis showed p.R122H mutation strongly associated with the increased risk of hereditary CP (OR = 65.52[9.09-472.48]) but not with nonhereditary CP, both alcoholic and idiopathic CP. Conclusions:Our study showing the differential role of p.R122H mutation in various etiologies of CP indicates that this complex disorder is likely influenced by multiple genetic factors as well as environmental factors

    RNAi-Microsponges Form through Self-Assembly of the Organic and Inorganic Products of Transcription

    Get PDF
    Inorganic nanostructures have been used extensively to package nucleic acids into forms useful for therapeutic applications. Here we report that the two products of transcription, RNA and inorganic pyrophosphate, can self-assemble to form composite microsponge structures composed of nanocrystalline magnesium pyrophosphate sheets (Mg[subscript 2]P[subscript 2]O[subscript 7]•3.5H[subscript 2]O) with RNA adsorbed to their surfaces. The microsponge particles contain high loadings of RNA (15–21 wt.%) that are protected from degradation and can be obtained through a rolling circle mechanism as large concatemers capable of mediating RNAi. The morphology of the RNAi microsponges is influenced by the time-course of the transcription reaction and interactions between RNA and the inorganic phase. Previous work demonstrated that polycations can be used to condense RNAi microsponges into nanoparticles capable of efficient transfection with low toxicity. Our new findings suggest that the formation of these nanoparticles is mediated by the gradual dissolution of magnesium pyrophosphate that occurs in the presence of polycations. The simple one-pot approach for assembling RNAi microsponges along with their unique properties could make them useful for RNA-based therapeutics.National Cancer Institute (U.S.) (Koch Institute Support (Core) Grant P30-CA14051)National Cancer Institute (U.S.) (Center for Cancer Nanotechnology Excellence Grant 5 U54 CA151884-02)Natural Sciences and Engineering Research Council of Canada (Postdoctoral Fellowship)National Health and Medical Research Council (Australia) (CJ Martin Fellowship)National Science Foundation (U.S.). Graduate Research Fellowshi

    A plug-and-play ratiometric pH-sensing nanoprobe for high-throughput investigation of endosomal escape

    Get PDF
    An important aspect in the design of nanomaterials for delivery is an understanding of its uptake and ultimate release to the cytosol of target cells. Real-time chemical sensing using a nanoparticle-based platform affords exquisite insight into the trafficking of materials and their cargo into cells. This versatile and tunable technology provides a powerful tool to probe the mechanism of cellular entry and cytosolic delivery of a variety of materials, allowing for a simple and convenient means to screen materials towards efficient delivery of therapeutics such as nucleic acids

    Osteotropic Therapy via Targeted Layer-by-Layer Nanoparticles

    Get PDF
    Current treatment options for debilitating bone diseases such as osteosarcoma, osteoporosis, and bone metastatic cancer are suboptimal and have low efficacy. New treatment options for these pathologies require targeted therapy that maximizes exposure to the diseased tissue and minimizes off-target side effects. This work investigates an approach for generating functional and targeted drug carriers specifically for treating primary osteosarcoma, a disease in which recurrence is common and the cure rate has remained around 20%. This approach utilizes the modularity of Layer-by-Layer (LbL) assembly to generate tissue-specific drug carriers for systemic administration. This is accomplished via surface modification of drug-loaded nanoparticles with an aqueous polyelectrolyte, poly(acrylic acid) (PAA), side-chain functionalized with alendronate, a potent clinically used bisphosphonate. Nanoparticles coated with PAA-alendronate are observed to bind and internalize rapidly in human osteosarcoma 143B cells. Encapsulation of doxorubicin, a front-line chemotherapeutic, in an LbL-targeted liposome demonstrates potent toxicity in vitro. Active targeting of 143B xenografts in NCR nude mice with the LbL-targeted doxorubicin liposomes promotes enhanced, prolonged tumor accumulation and significantly improved efficacy. This report represents a tunable approach towards the synthesis of drug carriers, in which LbL enables surface modification of nanoparticles for tissue-specific targeting and treatment.National Institutes of Health (U.S.) (P30 CA14051 (NCI))National Institutes of Health (U.S.) (5 U54 CA151884–02 (CCNE))National Institutes of Health (U.S.) (R01 AG029601 (NIA))National Institutes of Health (U.S.) (R01 EB010246 (NIBIB))David H. Koch Institute for Integrative Cancer Research at MIT (Koch Institute Swanson Biotechnology Center)National Science Foundation (U.S.) (Graduate Research Fellowship)National Health and Medical Research Council (Australia)Massachusetts Institute of Technology (David H. Koch (1962) Chair Professorship in Engineering

    Improved Imputation of Common and Uncommon Single Nucleotide Polymorphisms (SNPs) with a New Reference Set

    Get PDF
    Statistical imputation of genotype data is an important technique for analysis of genome-wide association studies (GWAS). We have built a reference dataset to improve imputation accuracy for studies of individuals of primarily European descent using genotype data from the Hap1, Omni1, and Omni2.5 human SNP arrays (Illumina). Our dataset contains 2.5-3.1 million variants for 930 European, 157 Asian, and 162 African/African-American individuals. Imputation accuracy of European data from Hap660 or OmniExpress array content, measured by the proportion of variants imputed with R^2^>0.8, improved by 34%, 23% and 12% for variants with MAF of 3%, 5% and 10%, respectively, compared to imputation using publicly available data from 1,000 Genomes and International HapMap projects. The improved accuracy with the use of the new dataset could increase the power for GWAS by as much as 8% relative to genotyping all variants. This reference dataset is available to the scientific community through the NCBI dbGaP portal. Future versions will include additional genotype data as well as non-European populations

    A Nanoparticle-Based Combination Chemotherapy Delivery System for Enhanced Tumor Killing by Dynamic Rewiring of Signaling Pathways

    Get PDF
    Exposure to the EGFR (epidermal growth factor receptor) inhibitor erlotinib promotes the dynamic rewiring of apoptotic pathways, which sensitizes cells within a specific period to subsequent exposure to the DNA-damaging agent doxorubicin. A critical challenge for translating this therapeutic network rewiring into clinical practice is the design of optimal drug delivery systems. We report the generation of a nanoparticle delivery vehicle that contained more than one therapeutic agent and produced a controlled sequence of drug release. Liposomes, representing the first clinically approved nanomedicine systems, are well-characterized, simple, and versatile platforms for the manufacture of functional and tunable drug carriers. Using the hydrophobic and hydrophilic compartments of liposomes, we effectively incorporated both hydrophobic (erlotinib) and hydrophilic (doxorubicin) small molecules, through which we achieved the desired time sequence of drug release. We also coated the liposomes with folate to facilitate targeting to cancer cells. When compared to the time-staggered application of individual drugs, staggered release from tumor-targeted single liposomal particles enhanced dynamic rewiring of apoptotic signaling pathways, resulting in improved tumor cell killing in culture and tumor shrinkage in animal models.National Institutes of Health (U.S.) (NIH and Center for Cancer Nanotechnology Excellence, grant no. P30-CA14051)National Institutes of Health (U.S.) (NIH and Center for Cancer Nanotechnology Excellence, grant no. U54-CA151884)National Institutes of Health (U.S.) (NIH and Center for Cancer Nanotechnology Excellence, grant no. U54-CA112967)National Institutes of Health (U.S.) (NIH and Center for Cancer Nanotechnology Excellence, grant no. R01-ES015339)National Institutes of Health (U.S.) (NIH and Center for Cancer Nanotechnology Excellence, grant no. R21-ES020466)Breast Cancer Alliance (Exceptional Project Grant)National Science Foundation (U.S.) (Graduate Research Fellowship)National Health and Medical Research Council (Australia) (CJ Martin Fellowship)National Institutes of Health (U.S.) (Kirschstein NRSA 1F32EB017614-01)Natural Sciences and Engineering Research Council of Canada (post-doctoral fellowship)Kathy and Curt Marble Cancer Research FundDavid H. Koch Institute for Integrative Cancer Research at MIT (Koch Institute Frontier Research Program
    corecore