886 research outputs found
Single Nucleotide Polymorphism in hsa-mir-196a-2 and Breast Cancer Risk: A Case Control Study
microRNAs are small, non-coding RNAs that influence gene expression on a post-transcriptional level. They participate in diverse biological pathways and may act as either tumor suppressor genes or oncogenes. As they may have an effect on thousands of target mRNAs, single-nucleotide polymorphisms in microRNA genes might have major functional consequences, because the microRNA's properties and/or maturation may change. miR-196a has been reported to be aberrantly expressed in breast cancer tissue. Additionally, the SNP rs11614913 in hsa-mir-196a-2 has been found to be associated with breast cancer risk in some studies although not in others. This study evaluated the association between rs11614913 and breast cancer risk in a Caucasian case-control cohort in Queensland, Australia. Results do not support an association of the tested hsa-mir-196a-2 polymorphism with breast cancer susceptibility in this cohort. As there is a discrepancy between our results and previous findings, it is important to assess the role of rs11614913 in breast cancer by further larger studies investigating different ethnic group
Matrix Element Distribution as a Signature of Entanglement Generation
We explore connections between an operator's matrix element distribution and
its entanglement generation. Operators with matrix element distributions
similar to those of random matrices generate states of high multi-partite
entanglement. This occurs even when other statistical properties of the
operators do not conincide with random matrices. Similarly, operators with some
statistical properties of random matrices may not exhibit random matrix element
distributions and will not produce states with high levels of multi-partite
entanglement. Finally, we show that operators with similar matrix element
distributions generate similar amounts of entanglement.Comment: 7 pages, 6 figures, to be published PRA, partially supersedes
quant-ph/0405053, expands quant-ph/050211
The Sloan Digital Sky Survey Quasar Catalog V. Seventh Data Release
We present the fifth edition of the Sloan Digital Sky Survey (SDSS) Quasar
Catalog, which is based upon the SDSS Seventh Data Release. The catalog, which
contains 105,783 spectroscopically confirmed quasars, represents the conclusion
of the SDSS-I and SDSS-II quasar survey. The catalog consists of the SDSS
objects that have luminosities larger than M_i = -22.0 (in a cosmology with H_0
= 70 km/s/Mpc Omega_M = 0.3, and Omega_Lambda = 0.7) have at least one emission
line with FWHM larger than 1000 km/s or have interesting/complex absorption
features, are fainter than i > 15.0 and have highly reliable redshifts. The
catalog covers an area of 9380 deg^2. The quasar redshifts range from 0.065 to
5.46, with a median value of 1.49; the catalog includes 1248 quasars at
redshifts greater than four, of which 56 are at redshifts greater than five.
The catalog contains 9210 quasars with i < 18; slightly over half of the
entries have i< 19. For each object the catalog presents positions accurate to
better than 0.1" rms per coordinate, five-band (ugriz) CCD-based photometry
with typical accuracy of 0.03 mag, and information on the morphology and
selection method. The catalog also contains radio, near-infrared, and X-ray
emission properties of the quasars, when available, from other large-area
surveys. The calibrated digital spectra cover the wavelength region 3800-9200
Ang. at a spectral resolution R = 2000 the spectra can be retrieved from the
SDSS public database using the information provided in the catalog. Over 96% of
the objects in the catalog were discovered by the SDSS. We also include a
supplemental list of an additional 207 quasars with SDSS spectra whose archive
photometric information is incomplete.Comment: Accepted, to appear in AJ, 7 figures, electronic version of Table 2
is available, see
http://www.sdss.org/dr7/products/value_added/qsocat_dr7.htm
Searching for a Stochastic Background of Gravitational Waves with LIGO
The Laser Interferometer Gravitational-wave Observatory (LIGO) has performed
the fourth science run, S4, with significantly improved interferometer
sensitivities with respect to previous runs. Using data acquired during this
science run, we place a limit on the amplitude of a stochastic background of
gravitational waves. For a frequency independent spectrum, the new limit is
. This is currently the most sensitive
result in the frequency range 51-150 Hz, with a factor of 13 improvement over
the previous LIGO result. We discuss complementarity of the new result with
other constraints on a stochastic background of gravitational waves, and we
investigate implications of the new result for different models of this
background.Comment: 37 pages, 16 figure
Search for gravitational wave bursts in LIGO's third science run
We report on a search for gravitational wave bursts in data from the three
LIGO interferometric detectors during their third science run. The search
targets subsecond bursts in the frequency range 100-1100 Hz for which no
waveform model is assumed, and has a sensitivity in terms of the
root-sum-square (rss) strain amplitude of hrss ~ 10^{-20} / sqrt(Hz). No
gravitational wave signals were detected in the 8 days of analyzed data.Comment: 12 pages, 6 figures. Amaldi-6 conference proceedings to be published
in Classical and Quantum Gravit
Quantum state preparation and macroscopic entanglement in gravitational-wave detectors
Long-baseline laser-interferometer gravitational-wave detectors are operating
at a factor of 10 (in amplitude) above the standard quantum limit (SQL) within
a broad frequency band. Such a low classical noise budget has already allowed
the creation of a controlled 2.7 kg macroscopic oscillator with an effective
eigenfrequency of 150 Hz and an occupation number of 200. This result, along
with the prospect for further improvements, heralds the new possibility of
experimentally probing macroscopic quantum mechanics (MQM) - quantum mechanical
behavior of objects in the realm of everyday experience - using
gravitational-wave detectors. In this paper, we provide the mathematical
foundation for the first step of a MQM experiment: the preparation of a
macroscopic test mass into a nearly minimum-Heisenberg-limited Gaussian quantum
state, which is possible if the interferometer's classical noise beats the SQL
in a broad frequency band. Our formalism, based on Wiener filtering, allows a
straightforward conversion from the classical noise budget of a laser
interferometer, in terms of noise spectra, into the strategy for quantum state
preparation, and the quality of the prepared state. Using this formalism, we
consider how Gaussian entanglement can be built among two macroscopic test
masses, and the performance of the planned Advanced LIGO interferometers in
quantum-state preparation
Digital Signal Processing Research Program
Contains table of contents for Part III, table of contents for Section 1, an introduction and reports on seventeen research projects.U.S. Navy - Office of Naval Research Contract N00014-90-J-1544Charles S. Draper Laboratory Contract DL-H-404158Rockwell Corporation Doctoral FellowshipU.S. Navy - Office of Naval Research Grant N00014-89-J-1489U.S. Navy - Office of Naval Research Grant N00014-90-J-1109The Federative Republic of Brazil ScholarshipLockheed Sanders, Inc.National Science Foundation Grant MIP 87-14969AT&T Bell Laboratories Doctoral ProgramBell Northern Research Ltd.Defense Advanced Research Projects Agency Contract N00014-87-K-0825IBM CorporationSloan FoundationU.S. Air Force - Office of Scientific Research FellowshipU.S. Air Force - Office of Scientific Research Grant AFOSR-91-0034National Science Foundation Graduate FellowshipCanada, Natural Science and Engineering Research Council ScholarshipU.S. Air Force - Office of Scientific Research Grant AFOSR-91-0034Texas Instruments, Inc
Digital Signal Processing Research Program
Contains table of contents for Section 2, an introduction and reports on seventeen research projects.U.S. Navy - Office of Naval Research Grant N00014-91-J-1628Vertical Arrays for the Heard Island Experiment Award No. SC 48548Charles S. Draper Laboratories, Inc. Contract DL-H-418472Defense Advanced Research Projects Agency/U.S. Navy - Office of Naval Research Grant N00014-89-J-1489Rockwell Corporation Doctoral FellowshipMIT - Woods Hole Oceanographic Institution Joint ProgramDefense Advanced Research Projects Agency/U.S. Navy - Office of Naval Research Grant N00014-90-J-1109Lockheed Sanders, Inc./U.S. Navy - Office of Naval Research Contract N00014-91-C-0125U.S. Air Force - Office of Scientific Research Grant AFOSR-91-0034AT&T Laboratories Doctoral ProgramU.S. Navy - Office of Naval Research Grant N00014-91-J-1628General Electric Foundation Graduate Fellowship in Electrical EngineeringNational Science Foundation Grant MIP 87-14969National Science Foundation Graduate FellowshipCanada Natural Sciences and Engineering Research CouncilLockheed Sanders, Inc
Expression of glucocorticoid and progesterone nuclear receptor genes in archival breast cancer tissue
BACKGROUND: Previous studies in our laboratory have shown associations of specific nuclear receptor gene variants with sporadic breast cancer. In order to investigate these findings further, we conducted the present study to determine whether expression levels of the progesterone and glucocorticoid nuclear receptor genes vary in different breast cancer grades. METHODS: RNA was extracted from paraffin-embedded archival breast tumour tissue and converted into cDNA. Sample cDNA underwent PCR using labelled primers to enable quantitation of mRNA expression. Expression data were normalized against the 18S ribosomal gene multiplex and analyzed using analysis of variance. RESULTS: Analysis of variance indicated a variable level of expression of both genes with regard to breast cancer grade (P = 0.00033 for glucocorticoid receptor and P = 0.023 for progesterone receptor). CONCLUSION: Statistical analysis indicated that expression of the progesterone nuclear receptor is elevated in late grade breast cancer tissue
Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas
This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing
molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin
- …
