545 research outputs found

    Developing a Rodent Model of Adverse Menopausal Symptoms

    Get PDF
    poster abstractMenopause is a condition where severe depletion of estrogen levels leads to a cluster of adverse symptoms such as anxiety, cutaneous vasodilation/sudomotor "hot flashes", sleep disturbances, and appetite change (Freeman et al., 2005; Seritan et al., 2010). Previously, estrogen replacement therapy was the first line treatment for menopausal symptoms. However, it is no longer acceptable due to increased risk of cancer (Rossouw et al., 2002). Therefore there is a need for creating non-hormonal therapies to reduce the incidence of adverse menopausal-related symptoms. This is hindered by the limited understanding of menopausal symptoms and a lack of animal models of "hot flashes" (Nelson et al., 2006). Currently, the most accepted model of hot flashes is addicting female rats to morphine then inducing morphine withdrawal using naloxone (a ?-opioid receptor competitive antagonist) to provoke increases in tail temp (an indicator of cutaneous vasodilation). Yet, there is no evidence that the opioid system is disrupted in women with menopause [e.g., naloxone does not provoke "hot flashes" clinically (DeFazio et al., 1984)]. Here we induced a menopausal state by surgically removing the ovaries (OVEX) to deplete estrogen which induces a cluster of adverse menopause-like symptoms that include: 1) increased anxiety; 2) weight gain; and 3) disrupted diurnal skin and core body tempature changes. Additionally, we have developed an alternative model of "hot flashes" where administering yohimbine (an alpha2-adrenergic autoreceptor antagonist that provokes "hot flashes in menopausal women) resulted in "hot flash"-related increases in skin temp in OVEX, but not sham-OVEX, female rats

    Optimal Sequential Selection of a Monotone Sequence From a Random Sample

    Get PDF
    The length of the longest monotone increasing subsequence of a random sample of size n is known to have expected value asymptotic to 2n1/2. We prove that it is possible to make sequential choices which give an increasing subsequence of expected length asymptotic to (2n)1/2. Moreover, this rate of increase is proved to be asymptotically best possible

    Dissipative dynamics of vortex lines in superfluid 4^{4}He

    Full text link
    We propose a Hamiltonian model that describes the interaction between a vortex line in superfluid 4^{4}He and the gas of elementary excitations. An equation of irreversible motion for the density operator of the vortex, regarded as a macroscopic quantum particle with a finite mass, is derived in the frame of Generalized Master Equations. This enables us to cast the effect of the coupling as a drag force with one reactive and one dissipative component, in agreement with the assumption of the phenomenological theories of vortex mutual friction in the two fluid model.Comment: 16 pages, no figures, to be published in PR

    BIOC 382.01: Elementary Biochemistry

    Get PDF

    Model validation for a noninvasive arterial stenosis detection problem

    Get PDF
    Copyright @ 2013 American Institute of Mathematical SciencesA current thrust in medical research is the development of a non-invasive method for detection, localization, and characterization of an arterial stenosis (a blockage or partial blockage in an artery). A method has been proposed to detect shear waves in the chest cavity which have been generated by disturbances in the blood flow resulting from a stenosis. In order to develop this methodology further, we use both one-dimensional pressure and shear wave experimental data from novel acoustic phantoms to validate corresponding viscoelastic mathematical models, which were developed in a concept paper [8] and refined herein. We estimate model parameters which give a good fit (in a sense to be precisely defined) to the experimental data, and use asymptotic error theory to provide confidence intervals for parameter estimates. Finally, since a robust error model is necessary for accurate parameter estimates and confidence analysis, we include a comparison of absolute and relative models for measurement error.The National Institute of Allergy and Infectious Diseases, the Air Force Office of Scientific Research, the Deopartment of Education and the Engineering and Physical Sciences Research Council (EPSRC)

    Microbial weathering of shale rock in natural and historic industrial environments

    Get PDF
    The weathering of shales is a globally important process affecting both natural and built environments. Shales form roughly 70 % of worldwide sedimentary rock deposits and therefore the weathering of these rocks has substantial effects on the geochemical cycling of elements such as carbon, iron and sulfur. Microbes have been shown to play a key role in weathering shales, primarily through the oxidation of the iron and sulfur of embedded pyrite and the resultant production of sulfuric acid. Despite significant interest in the microbial weathering of shales within industrial sectors such as biohydrometallurgy and civil engineering, comparatively few studies have investigated microbial shale weathering in natural environments. Furthermore, the role of microbes in natural shale weathering processes beyond iron oxidation has largely remained unexplored. In this thesis, the weathering capabilities of microbial communities from natural weathered shale was investigated. The North Yorkshire coastline was used as a study location, due to the abundance and diversity of natural cliffs and historic, disused industrial sites. Cliff erosion and recession on the North Yorkshire coastline is a major concern for local authorities and is the focus of current research. The aim of this work has been to evaluate microbial shale weathering processes within these environments, and hypothesise the possible contribution they may have to erosive processes. Phenotypic plate assays inoculated with weathered shale material were used to obtain rock weathering bacterial isolates that tested positive for a specific weathering phenotype, such as iron oxidation or siderophore production. Subsequent 16S rRNA sequencing enabled genera level identification, revealing 15 genera with rock weathering capabilities with several being associated with multiple weathering phenotypes including Aeromonas sp., Pseudomonas sp. and Streptomyces sp.. Shale enrichment liquid cultures were incubated with shale rock chips to simulate natural biological weathering conditions, and the concentration of rock-leached elements in the fluid measured. No evidence of microbially-enhanced leaching was found consistently for any element, however the significant reduction in leachate iron concentration under biological conditions indicates that iron precipitation occurred via microbial iron oxidation. Enrichment cultures inoculated with weathered shale and containing organic matter (OM) rich rocks in water or M9 medium, both liquids lacking an organic carbon source, were grown over several months. The cultures yielded microbial isolates that could utilise rock bound OM sources and one bacterial isolate, Variovorax paradoxus, was taken forward for ecophysiological study. The shale rock that the organism was isolated from, along with other OM rich rocks (mudstones and coals), elicited complex responses from V. paradoxus including enhanced growth and motility. Finally, mineral microcosms in vitro and mesocosms in situ investigated microbial colonization and weathering of shale-comprising minerals (albite, calcite, muscovite, pyrite and quartz). Microcosms were established using iron oxidizing enrichment cultures, as based on the results of the simulated rock weathering experiments, while the in situ mesocosms were buried within weathered shale scree within a disused mine level. Levels of colonization significantly varied between minerals within the microcosms (pyrite>albite, muscovite>quartz>calcite). Although differences in mineral colonization were seen in the mesocosms, they did not match those in the microcosms and were not statistically significant. Pyrite incubated in the microcosms became significantly weathered, with extensive pit formation across the mineral surface that is consistent with microbial iron oxidation. In the mesocosms, pit formation was not identified on pyrite surfaces but dark etchings into the pyrite surface were found underneath fungi hyphal growth. The results of this thesis highlights that a range of microbial rock weathering mechanisms are abundant across weathered shale environments. Microbial iron oxidizing activity was a dominant biogeochemical process that altered rock-fluid geochemistry and weathered pyrite surfaces. However, the impact on rock or mineral weathering of other microbial mechanisms was not elucidated by this work. Given the known capabilities of these mechanisms, the conditions under which they are active may not have been met within the experimental setup used. Microbial iron oxidation in shale and shale-derived materials has previously been demonstrated to weaken rock structure through acid production and secondary mineral formation. From the results of this thesis, it is clear that microbial iron oxidation is an active process within some of the weathered shale environments studied, including cliff surfaces. Therefore, it can be hypothesised that microbial activity could play a role in structurally weakening shale rock within cliffs and accelerate their erosion. Future work should attempt to quantify the rate and extent of microbial iron oxidizing activity within shale cliff environments and investigate its contribution to erosive processes
    corecore