482 research outputs found
Pattern scaling using ClimGen: monthly-resolution future climate scenarios including changes in the variability of precipitation
Development, testing and example applications of the pattern-scaling approach for generating future climate change projections are reported here, with a focus on a particular software application called “ClimGen”. A number of innovations have been implemented, including using exponential and logistic functions of global-mean temperature to represent changes in local precipitation and cloud cover, and interpolation from climate model grids to a finer grid while taking into account land-sea contrasts in the climate change patterns. Of particular significance is a new approach for incorporating changes in the inter-annual variability of monthly precipitation simulated by climate models. This is achieved by diagnosing simulated changes in the shape of the gamma distribution of monthly precipitation totals, applying the pattern-scaling approach to estimate changes in the shape parameter under a future scenario, and then perturbing sequences of observed precipitation anomalies so that their distribution changes according to the projected change in the shape parameter. The approach cannot represent changes to the structure of climate timeseries (e.g. changed autocorrelation or teleconnection patterns) were they to occur, but is shown here to be more successful at representing changes in low precipitation extremes than previous pattern-scaling methods
Evidences for a quasi 60-year North Atlantic Oscillation since 1700 and its meaning for global climate change
The North Atlantic Oscillation (NAO) obtained using instrumental and
documentary proxy predictors from Eurasia is found to be characterized by a
quasi 60-year dominant oscillation since 1650. This pattern emerges clearly
once the NAO record is time integrated to stress its comparison with the
temperature record. The integrated NAO (INAO) is found to well correlate with
the length of the day (since 1650) and the global surface sea temperature
record HadSST2 and HadSST3 (since 1850). These findings suggest that INAO can
be used as a good proxy for global climate change, and that a 60-year cycle
exists in the global climate since at least 1700. Finally, the INAO ~60-year
oscillation well correlates with the ~60- year oscillations found in the
historical European aurora record since 1700, which suggests that this 60-year
dominant climatic cycle has a solar-astronomical origin
Multiwavelength Observations of Pulsar Wind Nebulae
The extended nebulae formed as pulsar winds expand into their surroundings
provide information about the composition of the winds, the injection history
from the host pulsar, and the material into which the nebulae are expanding.
Observations from across the electromagnetic spectrum provide constraints on
the evolution of the nebulae, the density and composition of the surrounding
ejecta, the geometry of the central engines, and the long-term fate of the
energetic particles produced in these systems. Such observations reveal the
presence of jets and wind termination shocks, time-varying compact emission
structures, shocked supernova ejecta, and newly formed dust. Here I provide a
broad overview of the structure of pulsar wind nebulae, with specific examples
from observations extending from the radio band to very-high-energy gamma-rays
that demonstrate our ability to constrain the history and ultimate fate of the
energy released in the spin-down of young pulsars.Comment: 20 pages, 11 figures. Invited review to appear in Proc. of the
inaugural ICREA Workshop on "The High-Energy Emission from Pulsars and their
Systems" (2010), eds. N. Rea and D. Torres, (Springer Astrophysics and Space
Science series
The HY5-PIF regulatory module coordinates light and temperature control of photosynthetic gene transcription
The ability to interpret daily and seasonal alterations in light and temperature signals is essential for plant survival. This is particularly important during seedling establishment when the phytochrome photoreceptors activate photosynthetic pigment production for photoautotrophic growth. Phytochromes accomplish this partly through the suppression of phytochrome interacting factors (PIFs), negative regulators of chlorophyll and carotenoid biosynthesis. While the bZIP transcription factor long hypocotyl 5 (HY5), a potent PIF antagonist, promotes photosynthetic pigment accumulation in response to light. Here we demonstrate that by directly targeting a common promoter cis-element (G-box), HY5 and PIFs form a dynamic activation-suppression transcriptional module responsive to light and temperature cues. This antagonistic regulatory module provides a simple, direct mechanism through which environmental change can redirect transcriptional control of genes required for photosynthesis and photoprotection. In the regulation of photopigment biosynthesis genes, HY5 and PIFs do not operate alone, but with the circadian clock. However, sudden changes in light or temperature conditions can trigger changes in HY5 and PIFs abundance that adjust the expression of common target genes to optimise photosynthetic performance and growth
Multiple populations in globular clusters. Lessons learned from the Milky Way globular clusters
Recent progress in studies of globular clusters has shown that they are not
simple stellar populations, being rather made of multiple generations. Evidence
stems both from photometry and spectroscopy. A new paradigm is then arising for
the formation of massive star clusters, which includes several episodes of star
formation. While this provides an explanation for several features of globular
clusters, including the second parameter problem, it also opens new
perspectives about the relation between globular clusters and the halo of our
Galaxy, and by extension of all populations with a high specific frequency of
globular clusters, such as, e.g., giant elliptical galaxies. We review progress
in this area, focusing on the most recent studies. Several points remain to be
properly understood, in particular those concerning the nature of the polluters
producing the abundance pattern in the clusters and the typical timescale, the
range of cluster masses where this phenomenon is active, and the relation
between globular clusters and other satellites of our Galaxy.Comment: In press (The Astronomy and Astrophysics Review
Environmental and lifestyle risk factors of breast cancer in Malta-a retrospective case-control study
The funding for this research was obtained as part of IMaGenX – and ItaliaMalta co-financed EU project Operational Programme 2007–2013.AIM AND BACKGROUND:
Environmental exposures are known to play a role in the development of cancer, including breast cancer. There are known associations of breast cancer with environmental factors such as sunlight exposure, diet and exercise and alcohol consumption as well as physiological factors. This study examines the prevalence of risk factors for breast cancer related to dietary intake, environment and lifestyle in the female population of Malta. Malta has had little research in this area, and therefore an exploratory study was carried out.
METHODS:
A retrospective case-control design was applied. Two hundred cases and 403 controls were included. Both cases and controls were subjects without a known family history for breast cancer. Controls were age-matched to cases in an age-decade category roughly at a 2:1 ratio. Interviews were carried out face-to-face using a questionnaire designed by Maltese and Sicilian researchers, encompassing various factors including diet, lifestyle, physiological factors and medical history. Breast cancer risk was then analysed using both univariate and multivariate analyses. For factors having a metric scale, the Mann-Whitney test was used to compare mean scores, while for categorical factors, the chi-square test was used to compare percentages between the case and control groups. Statistical modelling was carried out using binary logistic regression to relate the likelihood of breast cancer to over 50 risk/protective factors analysed collectively.
RESULTS:
Univariate analysis showed around 20 parameters of interest, 14 of which were statistically significant at a 0.05 level of significance. Logistic regression analysis identified 11 predictors of interest that were statistically significant. Tomato, coffee and canned meat consumption were associated with lower likelihood of breast cancer (OR = 0.988, 0.901, 0.892, respectively), whereas beans and cabbage consumption and low sodium salt were positively associated with breast cancer (OR = 1.045, 1.834, 1.028, respectively). Premenopausal status was associated with a lower risk of breast cancer compared to postmenopausal status (OR = 0.067). Not having experienced myocardial infarction was associated with lower odds of breast cancer (OR = 0.331). Increased height was also found to have a strong association with risk of breast cancer, with the odds of having breast cancer increasing for every centimetre increase in height (OR = 1.048). In terms of quantity, odds of having breast cancer were lower in those exposed to sunlight (OR = 0.891). The odds of having breast cancer were also lower in those not using the oral contraceptive pill (OR = 0.454).
CONCLUSIONS:
Various factors in this exploratory study were found to be associated with development of breast cancer. While causal conclusions cannot be made, tomato consumption is of particular interest, as these results corroborate findings found in other studies. A negative association of breast cancer with sunlight exposure and oral contraceptive pill use corroborates findings in other studies. Other associations with dietary intake can be explained by dietary changes. More robust studies in this area, including possible longitudinal studies, are warranted.peer-reviewe
Prediction of pathological stage in patients with prostate cancer: a neuro-fuzzy model
The prediction of cancer staging in prostate cancer is a process for estimating the likelihood that the cancer has spread before treatment is given to the patient. Although important for determining the most suitable treatment and optimal management strategy for patients, staging continues to present significant challenges to clinicians. Clinical test results such as the pre-treatment Prostate-Specific Antigen (PSA) level, the biopsy most common tumor pattern (Primary Gleason pattern) and the second most common tumor pattern (Secondary Gleason pattern) in tissue biopsies, and the clinical T stage can be used by clinicians to predict the pathological stage of cancer. However, not every patient will return abnormal results in all tests. This significantly influences the capacity to effectively predict the stage of prostate cancer. Herein we have developed a neuro-fuzzy computational intelligence model for classifying and predicting the likelihood of a patient having Organ-Confined Disease (OCD) or Extra-Prostatic Disease (ED) using a prostate cancer patient dataset obtained from The Cancer Genome Atlas (TCGA) Research Network. The system input consisted of the following variables: Primary and Secondary Gleason biopsy patterns, PSA levels, age at diagnosis, and clinical T stage. The performance of the neuro-fuzzy system was compared to other computational intelligence based approaches, namely the Artificial Neural Network, Fuzzy C-Means, Support Vector Machine, the Naive Bayes classifiers, and also the AJCC pTNM Staging Nomogram which is commonly used by clinicians. A comparison of the optimal Receiver Operating Characteristic (ROC) points that were identified using these approaches, revealed that the neuro-fuzzy system, at its optimal point, returns the largest Area Under the ROC Curve (AUC), with a low number of false positives (FPR = 0.274, TPR = 0.789, AUC = 0.812). The proposed approach is also an improvement over the AJCC pTNM Staging Nomogram (FPR = 0.032, TPR = 0.197, AUC = 0.582)
The sinus tarsi approach in displaced intra-articular calcaneal fractures: a systematic review
Purpose: Although open reduction and internal fixation is currently considered the gold standard in surgical treatment of displaced intra-articular calcaneal fractures, various different approaches exist including the limited lateral approach. The aim of this systematic review was to combine the results of studies using the sinus tarsi approach, which is the most frequently applied limited lateral approach. Method: A literature search in the electronic databases of the Cochrane Library and Pubmed Medline, between January 1st 2000 to December 1st 2010, was conducted to identify studies in which the sinus tarsi approach or a modified sinus tarsi approach was utilized for the treatment of displaced intra-articular calcaneal fractures. The methodological quality of the included studies was assessed using the Coleman methodology score. Results: A total of eight case series reporting on 256 patients with 271 calcaneal fractures was identified. Overall good to excellent outcome was reached in three-quarters of all patients. An average complication rate of minor wound complications of 4.1% was reported and major wound complications in 0.7%. The need for a secondary subtalar arthrodesis occurred at an average rate of 4.3%. The average Coleman methodology score was 56.8 (range 39-72) points. Conclusion: The results, i.e. functional outcome and complication rates, of the sinus tarsi approach compare similarly or favourably to the extended lateral approach. Therefore, in the process of tailoring the best treatment modality to the right patient and the right fracture type, the sinus tarsi approach might be a valuable asset
Interaction of Temperature and Light in the Development of Freezing Tolerance in Plants
Abstract Freezing tolerance is the result of a wide range
of physical and biochemical processes, such as the induction
of antifreeze proteins, changes in membrane composition,
the accumulation of osmoprotectants, and changes
in the redox status, which allow plants to function at low
temperatures. Even in frost-tolerant species, a certain period
of growth at low but nonfreezing temperatures, known
as frost or cold hardening, is required for the development
of a high level of frost hardiness. It has long been known
that frost hardening at low temperature under low light
intensity is much less effective than under normal light
conditions; it has also been shown that elevated light
intensity at normal temperatures may partly replace the
cold-hardening period. Earlier results indicated that cold
acclimation reflects a response to a chloroplastic redox
signal while the effects of excitation pressure extend
beyond photosynthetic acclimation, influencing plant
morphology and the expression of certain nuclear genes
involved in cold acclimation. Recent results have shown
that not only are parameters closely linked to the photosynthetic
electron transport processes affected by light
during hardening at low temperature, but light may also
have an influence on the expression level of several other
cold-related genes; several cold-acclimation processes can
function efficiently only in the presence of light. The
present review provides an overview of mechanisms that
may explain how light improves the freezing tolerance of
plants during the cold-hardening period
Identification of Radiopure Titanium for the LZ Dark Matter Experiment and Future Rare Event Searches
The LUX-ZEPLIN (LZ) experiment will search for dark matter particle interactions with a detector containing a total of 10 tonnes of liquid xenon within a double-vessel cryostat. The large mass and proximity of the cryostat to the active detector volume demand the use of material with extremely low intrinsic radioactivity. We report on the radioassay campaign conducted to identify suitable metals, the determination of factors limiting radiopure production, and the selection of titanium for construction of the LZ cryostat and other detector components. This titanium has been measured with activities of U~1.6~mBq/kg, U~0.09~mBq/kg, Th~~mBq/kg, Th~~mBq/kg, K~0.54~mBq/kg, and Co~0.02~mBq/kg (68\% CL). Such low intrinsic activities, which are some of the lowest ever reported for titanium, enable its use for future dark matter and other rare event searches. Monte Carlo simulations have been performed to assess the expected background contribution from the LZ cryostat with this radioactivity. In 1,000 days of WIMP search exposure of a 5.6-tonne fiducial mass, the cryostat will contribute only a mean background of (stat)(sys) counts
- …
