864 research outputs found
Generation of a dynamo magnetic field in a protoplanetary accretion disk
A new computational technique is developed that allows realistic calculations of dynamo magnetic field generation in disk geometries corresponding to protoplanetary and protostellar accretion disks. The approach is of sufficient generality to allow, in the future, a wide class of accretion disk problems to be solved. Here, basic modes of a disk dynamo are calculated. Spatially localized oscillatory states are found to occur in Keplerain disks. A physical interpretation is given that argues that spatially localized fields of the type found in these calculations constitute the basic modes of a Keplerian disk dynamo
Models of the formation of the planets in the 47 UMa system
Formation of planets in the 47 UMa system is followed in an evolving
protoplanetary disk composed of gas and solids. The evolution of the disk is
calculated from an early stage, when all solids, assumed to be high-temperature
silicates, are in the dust form, to the stage when most solids are locked in
planetesimals. The simulation of planetary evolution starts with a solid embryo
of ~1 Earth mass, and proceeds according to the core accretion -- gas capture
model. Orbital parameters are kept constant, and it is assumed that the
environment of each planet is not perturbed by the second planet. It is found
that conditions suitable for both planets to form within several Myr are easily
created, and maintained throughout the formation time, in disks with . In such disks, a planet of 2.6 Jupiter masses (the minimum for
the inner planet of the 47 UMa system) may be formed at 2.1 AU from the star in
\~3 Myr, while a planet of 0.89 Jupiter masses (the minimum for the outer
planet) may be formed at 3.95 AU from the star in about the same time. The
formation of planets is possible as a result of a significant enhancement of
the surface density of solids between 1.0 and 4.0 AU, which results from the
evolution of a disk with an initially uniform gas-to-dust ratio of 167 and an
initial radius of 40 AU.Comment: Accepted for publication in A&A. 10 pages, 10 figure
What Fraction of Sun-like Stars have Planets?
The radial velocities of ~1800 nearby Sun-like stars are currently being
monitored by eight high-sensitivity Doppler exoplanet surveys. Approximately 90
of these stars have been found to host exoplanets massive enough to be
detectable. Thus at least ~5% of target stars possess planets. If we limit our
analysis to target stars that have been monitored the longest (~15 years), ~11%
possess planets. If we limit our analysis to stars monitored the longest and
whose low surface activity allow the most precise velocity measurements, ~25%
possess planets. By identifying trends of the exoplanet mass and period
distributions in a sub-sample of exoplanets less-biased by selection effects,
and linearly extrapolating these trends into regions of parameter space that
have not yet been completely sampled, we find at least ~9% of Sun-like stars
have planets in the mass and orbital period ranges Msin(i) > 0.3 M_Jupiter and
P 0.1
M_Jupiter and P < 60 years. Even this larger area of the mass-period plane is
less than 20% of the area occupied by our planetary system, suggesting that
this estimate is still a lower limit to the true fraction of Sun-like stars
with planets, which may be as large as ~100%.Comment: Conforms to version accepted by ApJ. Color version and movie
available at http://bat.phys.unsw.edu.au/~charley/download/whatfrac
Planetary migration in evolving planetesimals discs
In the current paper, we further improved the model for the migration of
planets introduced in Del Popolo et al. (2001) and extended to time-dependent
planetesimal accretion disks in Del Popolo and Eksi (2002). In the current
study, the assumption of Del Popolo and Eksi (2002), that the surface density
in planetesimals is proportional to that of gas, is released. In order to
obtain the evolution of planetesimal density, we use a method developed in
Stepinski and Valageas (1997) which is able to simultaneously follow the
evolution of gas and solid particles for up to 10^7 yrs. Then, the disk model
is coupled to migration model introduced in Del Popolo et al. (2001) in order
to obtain the migration rate of the planet in the planetesimal. We find that
the properties of solids known to exist in protoplanetary systems, together
with reasonable density profiles for the disk, lead to a characteristic radius
in the range 0.03-0.2 AU for the final semi-major axis of the giant planet.Comment: IJMP A in prin
Formation of giant planets around stars with various masses
We examine the predictions of the core accretion - gas capture model
concerning the efficiency of planet formation around stars with various masses.
First, we follow the evolution of gas and solids from the moment when all
solids are in the form of small grains to the stage when most of them are in
the form of planetesimals. We show that the surface density of the planetesimal
swarm tends to be higher around less massive stars. Then, we derive the minimum
surface density of the planetesimal swarm required for the formation of a giant
planet both in a numerical and in an approximate analytical approach. We
combine these results by calculating a set of representative disk models
characterized by different masses, sizes, and metallicities, and by estimating
their capability of forming giant planets. Our results show that the set of
protoplanetary disks capable of giant planet formation is larger for less
massive stars. Provided that the distribution of initial disk parameters does
not depend too strongly on the mass of the central star, we predict that the
percentage of stars with giant planets should increase with decreasing stellar
mass. Furthermore, we identify the radial redistribution of solids during the
formation of planetesimal swarms as the key element in explaining these
effects.Comment: Accepted for publication in A&A. 9 pages, 9 figure
Detection and measurement of planetary systems with GAIA
We use detailed numerical simulations and the Andromedae,
planetary system as a template to evaluate the capability of the ESA
Cornerstone Mission GAIA in detecting and measuring multiple planets around
solar-type stars in the neighborhood of the Solar System. For the outer two
planets of the Andromedae, system, GAIA high-precision global
astrometric measurements would provide estimates of the full set of orbital
elements and masses accurate to better than 1--10%, and would be capable of
addressing the coplanarity issue by determining the true geometry of the system
with uncertainties of order of a few degrees. Finally, we discuss the
generalization to a variety of configurations of potential planetary systems in
the solar neighborhood for which GAIA could provide accurate measurements of
unique value for the science of extra-solar planets.Comment: 4 pages, 2 pictures, accepted for publication in A&A Letter
Protoplanetary Disk Turbulence Driven by the Streaming Instability: Non-Linear Saturation and Particle Concentration
We present simulations of the non-linear evolution of streaming instabilities
in protoplanetary disks. The two components of the disk, gas treated with grid
hydrodynamics and solids treated as superparticles, are mutually coupled by
drag forces. We find that the initially laminar equilibrium flow spontaneously
develops into turbulence in our unstratified local model. Marginally coupled
solids (that couple to the gas on a Keplerian time-scale) trigger an upward
cascade to large particle clumps with peak overdensities above 100. The clumps
evolve dynamically by losing material downstream to the radial drift flow while
receiving recycled material from upstream. Smaller, more tightly coupled solids
produce weaker turbulence with more transient overdensities on smaller length
scales. The net inward radial drift is decreased for marginally coupled
particles, whereas the tightly coupled particles migrate faster in the
saturated turbulent state. The turbulent diffusion of solid particles, measured
by their random walk, depends strongly on their stopping time and on the
solids-to-gas ratio of the background state, but diffusion is generally modest,
particularly for tightly coupled solids. Angular momentum transport is too weak
and of the wrong sign to influence stellar accretion. Self-gravity and
collisions will be needed to determine the relevance of particle overdensities
for planetesimal formation.Comment: Accepted for publication in ApJ (17 pages). Movies of the simulations
can be downloaded at http://www.mpia.de/~johansen/research_en.ph
- …
