590 research outputs found
X-ray spectra of hot accretion flows
We study radiative properties of hot accretion flows in a general
relativistic model with an exact treatment of global Comptonization, developed
in our recent works. We note a strong dependence of electron temperature on the
strength of magnetic field and we clarify that the underlying mechanism
involves the change of the flow structure, with more strongly magnetised flows
approaching the slab geometry more closely. We find that the model with thermal
synchrotron radiation being the main source of seed photons agrees with the
spectral index vs Eddington ratio relation observed in black hole transients
below 1 per cent of the Eddington luminosity, LEdd, and models with a weak
direct heating of electrons (small delta) are more consistent with
observations. Models with large delta predict slightly too soft spectra,
furthermore, they strongly overpredict electron temperatures at ~0.01 LEdd. The
low-luminosity spectra, at <0.001 LEdd, deviate from a power-law shape in the
soft X-ray range and we note that the first-scattering bump often resembles a
thermal like component, with the temperature of a few hundred eV, superimposed
on a power-law spectrum. The model with thermal Comptonization of thermal
synchrotron radiation does not agree with well studied AGNs observed below
~0.01 LEdd, for which there is a substantial evidence for the lack of an inner
cold disc. This indicates that the model of hot flows powering AGNs should be
revised, possibly by taking into account an additional (but internal to the
flow) source of seed photons.Comment: 16 pages, 10 figures, accepted in MNRA
The Galactic dust as a foreground to Cosmic Microwave Background maps
We present results obtained with the PRONAOS balloon-borne experiment on
interstellar dust. In particular, the submillimeter / millimeter spectral index
is found to vary between roughly 1 and 2.5 on small scales (3.5' resolution).
This could have implications for component separation in Cosmic Microwave
Background maps.Comment: 4 pages, 1 figure, proceeding of the Multi-Wavelength Cosmology
conference held in Mykonos, Greece, June 2003, ed. Kluwe
Dust Emissivity Variations In the Milky Way
Dust properties appear to vary according to the environment in which the dust
evolves. Previous observational indications of these variations in the FIR and
submm spectral range are scarce and limited to specific regions of the sky. To
determine whether these results can be generalised to larger scales, we study
the evolution in dust emissivities from the FIR to mm wavelengths, in the
atomic and molecular ISM, along the Galactic plane towards the outer Galaxy. We
correlate the dust FIR to mm emission with the HI and CO emission. The study is
carried out using the DIRBE data from 100 to 240 mic, the Archeops data from
550 mic to 2.1 mm, and the WMAP data at 3.2 mm (W band), in regions with
Galactic latitude |b| < 30 deg, over the Galactic longitude range (75 deg < l <
198 deg) observed with Archeops. In all regions studied, the emissivity spectra
in both the atomic and molecular phases are steeper in the FIR (beta = 2.4)
than in the submm and mm (beta = 1.5). We find significant variations in the
spectral shape of the dust emissivity as a function of the dust temperature in
the molecular phase. Regions of similar dust temperature in the molecular and
atomic gas exhibit similar emissivity spectra. Regions where the dust is
significantly colder in the molecular phase show a significant increase in
emissivity for the range 100 - 550 mic. This result supports the hypothesis of
grain coagulation in these regions, confirming results obtained over small
fractions of the sky in previous studies and allowing us to expand these
results to the cold molecular environments in general of the outer MW. We note
that it is the first time that these effects have been demonstrated by direct
measurement of the emissivity, while previous studies were based only on
thermal arguments.Comment: 16 pages, 6 figures, accepted in A&
Direct evidence of dust growth in L183 from MIR light scattering
Theoretical arguments suggest that dust grains should grow in the dense cold
parts of molecular clouds. Evidence of larger grains has so far been gathered
in near/mid infrared extinction and millimeter observations. Interpreting the
data is, however, aggravated by the complex interplay of density and dust
properties (as well as temperature for thermal emission). We present new
Spitzer data of L183 in bands that are sensitive and insensitive to PAHs. The
visual extinction AV map derived in a former paper was fitted by a series of 3D
Gaussian distributions. For different dust models, we calculate the scattered
MIR radiation images of structures that agree agree with the AV map and compare
them to the Spitzer data. The Spitzer data of L183 show emission in the 3.6 and
4.5 micron bands, while the 5.8 micron band shows slight absorption. The
emission layer of stochastically heated particles should coincide with the
layer of strongest scattering of optical interstellar radiation, which is seen
as an outer surface on I band images different from the emission region seen in
the Spitzer images. Moreover, PAH emission is expected to strongly increase
from 4.5 to 5.8 micron, which is not seen. Hence, we interpret this emission to
be MIR cloudshine. Scattered light modeling when assuming interstellar medium
dust grains without growth does not reproduce flux measurable by Spitzer. In
contrast, models with grains growing with density yield images with a flux and
pattern comparable to the Spitzer images in the bands 3.6, 4.5, and 8.0 micron.Comment: 13 pages, 11 figures, accepted for publication in Astronomy and
Astrophysic
A Corona Australis cloud filament seen in NIR scattered light II: Comparison with sub-millimeter data
We study a northern part of the Corona Australis molecular cloud that
consists of a filament and a dense sub-millimetre core inside the filament. Our
aim is to measure dust temperature and sub-mm emissivity within the region. We
also look for confirmation that near-infrared (NIR) surface brightness can be
used to study the structure of even very dense clouds. We extend our previous
NIR mapping south of the filament. The dust colour temperatures are estimated
using Spitzer 160um and APEX/Laboca 870um maps. The column densities derived
based on the reddening of background stars, NIR surface brightness, and thermal
sub-mm dust emission are compared. A three dimensional toy model of the
filament is used to study the effect of anisotropic illumination on
near-infrared surface brightness and the reliability of dust temperature
determination. Relative to visual extinction, the estimated emissivity at 870um
is kappa(870) = (1.3 +- 0.4) x 10^{-5} 1/mag. This is similar to the values
found in diffuse medium. A significant increase in the sub-millimetre
emissivity seems to be excluded. In spite of saturation, NIR surface brightness
was able to accurately pinpoint, and better than measurements of the colour
excesses of background stars, the exact location of the column density maximum.
Both near- and far-infrared data show that the intensity of the radiation field
is higher south of the filament.Comment: 9 pages, 9 figures, accepted to A&
Profiles of interstellar cloud filaments. Observational effects in synthetic sub-millimetre observations
Sub-millimetre observations suggest that the filaments of interstellar clouds
have rather uniform widths and can be described with the so-called Plummer
profiles. The shapes of the filament profiles are linked to their physical
state. Before drawing conclusions on the observed column density profiles, we
must evaluate the observational uncertainties. We want to estimate the bias
that could result from radiative transfer effects or from variations of submm
dust emissivity. We use cloud models obtained with magnetohydrodynamic
simulations and carry out radiative transfer calculations to produce maps of
sub-millimetre emission. Column densities are estimated based on the synthetic
observations. For selected filaments, the estimated profiles are compared to
those derived from the original column density. Possible effects from spatial
variations of dust properties are examined. With instrumental noise typical of
the Herschel observations, the parameters derived for nearby clouds are correct
to within a few percent. The radiative transfer effects have only a minor
effect on the results. If the signal-to-noise ratio is degraded by a factor of
four, the errors become significant and for half of the examined filaments the
values cannot be constrained. The errors increase in proportion to the cloud
distance. Assuming the resolution of Herschel instruments, the model filaments
are barely resolved at a distance of ~400 pc and the errors in the parameters
of the Plummer function are several tens of per cent. The Plummer parameters,
in particular the power-law exponent p, are sensitive to noise but can be
determined with good accuracy using Herschel data. One must be cautious about
possible line-of-sight confusion. In our models, a large fraction of the
filaments seen in the column density maps are not continuous structures in
three dimensions.Comment: 12 pages, 14 figures, accepted to A&
Large-scale variations of the dust optical properties in the Galaxy
We present an analysis of the dust optical properties at large scale, for the
whole galactic anticenter hemisphere. We used the 2MASS Extended Source Catalog
to obtain the total reddening on each galaxy line of sight and we compared this
value to the IRAS 100 microns surface brightness converted to extinction by
Schlegel et al (1998). We performed a careful examination and correction of the
possible systematic effects resulting from foreground star contamination,
redshift contribution and galaxy selection bias. We also evaluated the
contribution of dust temperature variations and interstellar clumpiness to our
method. The correlation of the near-infrared extinction to the far-infrared
optical depth shows a discrepancy for visual extinction greater than 1 mag with
a ratio A_V(FIR) / A_V(gal) = 1.31 +- 0.06. We attribute this result to the
presence of fluffy/composite grains characterized by an enhanced far--infrared
emissivity. Our analysis, applied to half of the sky, provides new insights on
the dust grains nature suggesting fluffy grains are found not only in some very
specific regions but in all directions for which the visual extinction reaches
about 1 mag.Comment: 10 pages, 11 figures, accepted for publication in A&
Accuracy of core mass estimates in simulated observations of dust emission
We study the reliability of mass estimates obtained for molecular cloud cores
using sub-millimetre and infrared dust emission. We use magnetohydrodynamic
simulations and radiative transfer to produce synthetic observations with
spatial resolution and noise levels typical of Herschel surveys. We estimate
dust colour temperatures using different pairs of intensities, calculate column
densities and compare the estimated masses with the true values. We compare
these results to the case when all five Herschel wavelengths are available. We
investigate the effects of spatial variations of dust properties and the
influence of embedded heating sources. Wrong assumptions of dust opacity and
its spectral index beta can cause significant systematic errors in mass
estimates. These are mainly multiplicative and leave the slope of the mass
spectrum intact, unless cores with very high optical depth are included.
Temperature variations bias colour temperature estimates and, in quiescent
cores with optical depths higher than for normal stable cores, masses can be
underestimated by up to one order of magnitude. When heated by internal
radiation sources the observations recover the true mass spectra. The shape,
although not the position, of the mass spectrum is reliable against
observational errors and biases introduced in the analysis. This changes only
if the cores have optical depths much higher than expected for basic
hydrostatic equilibrium conditions. Observations underestimate the value of
beta whenever there are temperature variations along the line of sight. A bias
can also be observed when the true beta varies with wavelength. Internal
heating sources produce an inverse correlation between colour temperature and
beta that may be difficult to separate from any intrinsic beta(T) relation of
the dust grains. This suggests caution when interpreting the observed mass
spectra and the spectral indices.Comment: Revised version, 17 pages, 17 figures, submitted to A&
SCUBA and Spitzer observations of the Taurus molecular cloud - pulling the bull's tail
We present continuum data from the Submillimetre Common-User Bolometer Array
(SCUBA) on the James Clerk Maxwell Telescope (JCMT), and the Mid-Infrared
Photometer for Spitzer (MIPS) on the Spitzer Space Telescope, at submillimetre
and infrared wavelengths respectively. We study the Taurus molecular cloud 1
(TMC1), and in particular the region of the Taurus Molecular Ring (TMR). In the
continuum data we see no real evidence for a ring, but rather we see one side
of it only, appearing as a filament. We name the filament `the bull's tail'.
The filament is seen in emission at 850, 450 and 160um, and in absorption at
70um. We compare the data with archive data from the Infra-Red Astronomical
Satellite (IRAS) at 12, 25, 60, 100um, in which the filament is also seen in
absorption. We find that the emission from the filament consists of two
components: a narrow, cold (~8K), central core; and a broader, slightly warmer
(~12K), shoulder of emission. We use a radiative transfer code to model the
filament's appearance, either in emission or absorption, simultaneously at each
of the different wavelengths. Our best fit model uses a Plummer-like density
profile and a homogeneous interstellar dust grain population. Unlike previous
work on a similar, but different filament in Taurus, we require no grain
coagulation to explain our data.Comment: 10 pages, 9 Figures, Accepted by MNRA
A Broadband Study of Galactic Dust Emission
We have combined infrared data with HI, H2 and HII surveys in order to
spatially decompose the observed dust emission into components associated with
different phases of the gas. An inversion technique is applied. For the
decomposition, we use the IRAS 60 and 100 micron bands, the DIRBE 140 and 240
micron bands, as well as Archeops 850 and 2096 micron wavelengths. In addition,
we apply the decomposition to all five WMAP bands. We obtain longitude and
latitude profiles for each wavelength and for each gas component in carefully
selected Galactic radius bins.We also derive emissivity coefficients for dust
in atomic, molecular and ionized gas in each of the bins.The HI emissivity
appears to decrease with increasing Galactic radius indicating that dust
associated with atomic gas is heated by the ambient interstellar radiation
field (ISRF). By contrast, we find evidence that dust mixed with molecular
clouds is significantly heated by O/B stars still embedded in their progenitor
clouds. By assuming a modified black-body with emissivity law lambda^(-1.5), we
also derive the radial distribution of temperature for each phase of the gas.
All of the WMAP bands except W appear to be dominated by emission from
something other than normal dust, most likely a mixture of thermal
bremstrahlung from diffuse ionized gas, synchrotron emission and spinning dust.
Furthermore, we find indications of an emissivity excess at long wavelengths
(lambda > 850 micron) in the outer Galaxy (R > 8.9 kpc). This suggests either
the existence of a very cold dust component in the outer Galaxy or a
temperature dependence of the spectral emissivity index. Finally, it is shown
that ~ 80% of the total FIR luminosity is produced by dust associated with
atomic hydrogen, in agreement with earlier findings by Sodroski et al. (1997).Comment: accepted for publication by A&
- …
