9,153 research outputs found
Advanced propulsion for LEO-Moon transport. 1: A method for evaluating advanced propulsion performance
This report describes a study to evaluate the benefits of advanced propulsion technologies for transporting materials between low Earth orbit and the Moon. A relatively conventional reference transportation system, and several other systems, each of which includes one advanced technology component, are compared in terms of how well they perform a chosen mission objective. The evaluation method is based on a pairwise life-cycle cost comparison of each of the advanced systems with the reference system. Somewhat novel and economically important features of the procedure are the inclusion not only of mass payback ratios based on Earth launch costs, but also of repair and capital acquisition costs, and of adjustments in the latter to reflect the technological maturity of the advanced technologies. The required input information is developed by panels of experts. The overall scope and approach of the study are presented in the introduction. The bulk of the paper describes the evaluation method; the reference system and an advanced transportation system, including a spinning tether in an eccentric Earth orbit, are used to illustrate it
The spectrum of lattice QCD with staggered fermions at strong coupling
Using 4 flavors of staggered fermions at infinite gauge coupling, we compare
various analytic results for the hadron spectrum with exact Monte Carlo
simulations. Agreement with Ref. \cite{Martin_etal} is very good, at the level
of a few percent.
Our results give credence to a discrepancy between the baryon mass and the
critical chemical potential, for which baryons fill the lattice at zero
temperature and infinite gauge coupling. Independent determinations of the
latter set it at about 30% less than the baryon mass. One possible explanation
is that the nuclear attraction becomes strong at infinite gauge coupling.Comment: 11 pages, 3 figure
Stringent upper limit on the direct 3α decay of the Hoyle state in 12C
We investigate an implication of the most recent observation of a second Jπ=2+ state in 12C, which was measured using the 12C(γ,α)8Be(g.s.) reaction. In addition to the dissociation of 12C to an α-particle and 8Be in its ground state, a small fraction of events (2%) were identified as direct decays and decays to excited states in 8Be. This allowed a limit on the direct 3α partial decay width to be determined as Γ3α<32(4) keV. Since this 2+ state is predicted by all theoretical models to be a collective excitation of the Hoyle state, the 3α partial width of the Hoyle state is calculable from the ratio of 3α decay penetrabilities of the Hoyle and 2+ states. This was calculated by using the semiclassical Wenzel-Kramers-Brillouin approach and we deduce a stringent upper limit for the direct decay branching ratio of the Hoyle state of
Γ3α
Γ
<5.7×10−6, over an order of magnitude lower than previously reported. This result places the direct measurement of this rare decay mode beyond current experimental capabilities
Solving the Jitter Problem in Microwave Compressed Ultrafast Electron Diffraction Instruments: Robust Sub-50 fs Cavity-Laser Phase Stabilization
We demonstrate the compression of electron pulses in a high-brightness
ultrafast electron diffraction (UED) instrument using phase-locked microwave
signals directly generated from a mode-locked femtosecond oscillator.
Additionally, a continuous-wave phase stabilization system that accurately
corrects for phase fluctuations arising in the compression cavity from both
power amplification and thermal drift induced detuning was designed and
implemented. An improvement in the microwave timing stability from 100 fs to 5
fs RMS is measured electronically and the long-term arrival time stability
(10 hours) of the electron pulses improves to below our measurement
resolution of 50 fs. These results demonstrate sub-relativistic ultrafast
electron diffraction with compressed pulses that is no longer limited by
laser-microwave synchronization.Comment: Accepted for publication in Structural Dynamic
Feline Hypertrophic Cardiomyopathy: A Spontaneous Large Animal Model of Human HCM.
Hypertrophic cardiomyopathy (HCM) is a common disease in pet cats, affecting 10-15% of the pet cat population. The similarity to human HCM, the rapid progression of disease, and the defined and readily determined endpoints of feline HCM make it an excellent natural model that is genotypically and phenotypically similar to human HCM. The Maine Coon and Ragdoll cats are particularly valuable models of HCM because of myosin binding protein-C mutations and even higher disease incidence compared to the overall feline population. The cat overcomes many of the limitations of rodent HCM models, and can provide enhanced translation of information from in vitro and induced small animal models to human clinical trials. Physicians and veterinarians working together in a collaborative and interdisciplinary approach can accelerate the discovery of more effective treatments for this and other cardiovascular diseases affecting human and veterinary patients
Etch Induced Microwave Losses in Titanium Nitride Superconducting Resonators
We have investigated the correlation between the microwave loss and
patterning method for coplanar waveguide titanium nitride resonators fabricated
on Si wafers. Three different methods were investigated: fluorine- and
chlorine-based reactive ion etches and an argon-ion mill. At high microwave
probe powers the reactive etched resonators showed low internal loss, whereas
the ion-milled samples showed dramatically higher loss. At single-photon powers
we found that the fluorine-etched resonators exhibited substantially lower loss
than the chlorine-etched ones. We interpret the results by use of numerically
calculated filling factors and find that the silicon surface exhibits a higher
loss when chlorine-etched than when fluorine-etched. We also find from
microscopy that re-deposition of silicon onto the photoresist and side walls is
the probable cause for the high loss observed for the ion-milled resonator
The Role of Interactions in an Electronic Fabry-Perot Interferometer Operating in the Quantum Hall Effect Regime
Interference of edge channels is expected to be a prominent tool for studying
statistics of charged quasiparticles in the quantum Hall effect (QHE) [A. Stern
(2008), Ann. Phys. 1:204; C. Chamon et al. (1997), Phys. Rev. B, 55:2331]. We
present here a detailed study of an electronic Fabry-Perot interferometer (FPI)
operating in the QHE regime [C. Chamon et al. (1997), Phys. Rev. B, 55:2331],
with the phase of the interfering quasiparticles controlled by the
Aharonov-Bohm (AB) effect. Our main finding is that Coulomb interactions among
the electrons dominate the interference, even in a relatively large area FPI,
leading to a strong dependence of the area enclosed by the interference loop on
the magnetic field. In particular, for a composite edge structure, with a few
independent edge channels propagating along the edge, interference of the
outmost edge channel (belonging to the lowest Landau level) was insensitive to
magnetic field; suggesting a constant enclosed flux. However, when any of the
inner edge channels interfered, the enclosed flux decreased when the magnetic
field increased. By intentionally varying the enclosed area with a biased
metallic gate and observing the periodicity of the interference pattern,
charges e (for integer filling factors) and e/3 (for a fractional filling
factor) were found to be expelled from the FPI. Moreover, these observations
provided also a novel way of detecting the charge of the interfering
quasiparticles.Comment: 8 pages, 8 figure
From splashing to bouncing: the influence of viscosity on the impact of suspension droplets on a solid surface
We experimentally investigated the splashing of dense suspension droplets
impacting a solid surface, extending prior work to the regime where the
viscosity of the suspending liquid becomes a significant parameter. The overall
behavior can be described by a combination of two trends. The first one is that
the splashing becomes favored when the kinetic energy of individual particles
at the surface of a droplet overcomes the confinement produced by surface
tension. This is expressed by a particle-based Weber number . The second
is that splashing is suppressed by increasing the viscosity of the solvent.
This is expressed by the Stokes number , which influences the effective
coefficient of restitution of colliding particles. We developed a phase diagram
where the splashing onset is delineated as a function of both and .
A surprising result occurs at very small Stokes number, where not only
splashing is suppressed but also plastic deformation of the droplet. This leads
to a situation where droplets can bounce back after impact, an observation we
are able to reproduce using discrete particle numerical simulations that take
into account viscous interaction between particles and elastic energy
- …
