9,153 research outputs found

    Advanced propulsion for LEO-Moon transport. 1: A method for evaluating advanced propulsion performance

    Get PDF
    This report describes a study to evaluate the benefits of advanced propulsion technologies for transporting materials between low Earth orbit and the Moon. A relatively conventional reference transportation system, and several other systems, each of which includes one advanced technology component, are compared in terms of how well they perform a chosen mission objective. The evaluation method is based on a pairwise life-cycle cost comparison of each of the advanced systems with the reference system. Somewhat novel and economically important features of the procedure are the inclusion not only of mass payback ratios based on Earth launch costs, but also of repair and capital acquisition costs, and of adjustments in the latter to reflect the technological maturity of the advanced technologies. The required input information is developed by panels of experts. The overall scope and approach of the study are presented in the introduction. The bulk of the paper describes the evaluation method; the reference system and an advanced transportation system, including a spinning tether in an eccentric Earth orbit, are used to illustrate it

    The spectrum of lattice QCD with staggered fermions at strong coupling

    Get PDF
    Using 4 flavors of staggered fermions at infinite gauge coupling, we compare various analytic results for the hadron spectrum with exact Monte Carlo simulations. Agreement with Ref. \cite{Martin_etal} is very good, at the level of a few percent. Our results give credence to a discrepancy between the baryon mass and the critical chemical potential, for which baryons fill the lattice at zero temperature and infinite gauge coupling. Independent determinations of the latter set it at about 30% less than the baryon mass. One possible explanation is that the nuclear attraction becomes strong at infinite gauge coupling.Comment: 11 pages, 3 figure

    Stringent upper limit on the direct 3α decay of the Hoyle state in 12C

    Get PDF
    We investigate an implication of the most recent observation of a second Jπ=2+ state in 12C, which was measured using the 12C(γ,α)8Be(g.s.) reaction. In addition to the dissociation of 12C to an α-particle and 8Be in its ground state, a small fraction of events (2%) were identified as direct decays and decays to excited states in 8Be. This allowed a limit on the direct 3α partial decay width to be determined as Γ3α<32(4) keV. Since this 2+ state is predicted by all theoretical models to be a collective excitation of the Hoyle state, the 3α partial width of the Hoyle state is calculable from the ratio of 3α decay penetrabilities of the Hoyle and 2+ states. This was calculated by using the semiclassical Wenzel-Kramers-Brillouin approach and we deduce a stringent upper limit for the direct decay branching ratio of the Hoyle state of Γ3α Γ <5.7×10−6, over an order of magnitude lower than previously reported. This result places the direct measurement of this rare decay mode beyond current experimental capabilities

    Solving the Jitter Problem in Microwave Compressed Ultrafast Electron Diffraction Instruments: Robust Sub-50 fs Cavity-Laser Phase Stabilization

    Full text link
    We demonstrate the compression of electron pulses in a high-brightness ultrafast electron diffraction (UED) instrument using phase-locked microwave signals directly generated from a mode-locked femtosecond oscillator. Additionally, a continuous-wave phase stabilization system that accurately corrects for phase fluctuations arising in the compression cavity from both power amplification and thermal drift induced detuning was designed and implemented. An improvement in the microwave timing stability from 100 fs to 5 fs RMS is measured electronically and the long-term arrival time stability (>>10 hours) of the electron pulses improves to below our measurement resolution of 50 fs. These results demonstrate sub-relativistic ultrafast electron diffraction with compressed pulses that is no longer limited by laser-microwave synchronization.Comment: Accepted for publication in Structural Dynamic

    Feline Hypertrophic Cardiomyopathy: A Spontaneous Large Animal Model of Human HCM.

    Get PDF
    Hypertrophic cardiomyopathy (HCM) is a common disease in pet cats, affecting 10-15% of the pet cat population. The similarity to human HCM, the rapid progression of disease, and the defined and readily determined endpoints of feline HCM make it an excellent natural model that is genotypically and phenotypically similar to human HCM. The Maine Coon and Ragdoll cats are particularly valuable models of HCM because of myosin binding protein-C mutations and even higher disease incidence compared to the overall feline population. The cat overcomes many of the limitations of rodent HCM models, and can provide enhanced translation of information from in vitro and induced small animal models to human clinical trials. Physicians and veterinarians working together in a collaborative and interdisciplinary approach can accelerate the discovery of more effective treatments for this and other cardiovascular diseases affecting human and veterinary patients

    Etch Induced Microwave Losses in Titanium Nitride Superconducting Resonators

    Full text link
    We have investigated the correlation between the microwave loss and patterning method for coplanar waveguide titanium nitride resonators fabricated on Si wafers. Three different methods were investigated: fluorine- and chlorine-based reactive ion etches and an argon-ion mill. At high microwave probe powers the reactive etched resonators showed low internal loss, whereas the ion-milled samples showed dramatically higher loss. At single-photon powers we found that the fluorine-etched resonators exhibited substantially lower loss than the chlorine-etched ones. We interpret the results by use of numerically calculated filling factors and find that the silicon surface exhibits a higher loss when chlorine-etched than when fluorine-etched. We also find from microscopy that re-deposition of silicon onto the photoresist and side walls is the probable cause for the high loss observed for the ion-milled resonator

    The Role of Interactions in an Electronic Fabry-Perot Interferometer Operating in the Quantum Hall Effect Regime

    Full text link
    Interference of edge channels is expected to be a prominent tool for studying statistics of charged quasiparticles in the quantum Hall effect (QHE) [A. Stern (2008), Ann. Phys. 1:204; C. Chamon et al. (1997), Phys. Rev. B, 55:2331]. We present here a detailed study of an electronic Fabry-Perot interferometer (FPI) operating in the QHE regime [C. Chamon et al. (1997), Phys. Rev. B, 55:2331], with the phase of the interfering quasiparticles controlled by the Aharonov-Bohm (AB) effect. Our main finding is that Coulomb interactions among the electrons dominate the interference, even in a relatively large area FPI, leading to a strong dependence of the area enclosed by the interference loop on the magnetic field. In particular, for a composite edge structure, with a few independent edge channels propagating along the edge, interference of the outmost edge channel (belonging to the lowest Landau level) was insensitive to magnetic field; suggesting a constant enclosed flux. However, when any of the inner edge channels interfered, the enclosed flux decreased when the magnetic field increased. By intentionally varying the enclosed area with a biased metallic gate and observing the periodicity of the interference pattern, charges e (for integer filling factors) and e/3 (for a fractional filling factor) were found to be expelled from the FPI. Moreover, these observations provided also a novel way of detecting the charge of the interfering quasiparticles.Comment: 8 pages, 8 figure

    From splashing to bouncing: the influence of viscosity on the impact of suspension droplets on a solid surface

    Full text link
    We experimentally investigated the splashing of dense suspension droplets impacting a solid surface, extending prior work to the regime where the viscosity of the suspending liquid becomes a significant parameter. The overall behavior can be described by a combination of two trends. The first one is that the splashing becomes favored when the kinetic energy of individual particles at the surface of a droplet overcomes the confinement produced by surface tension. This is expressed by a particle-based Weber number WepWe_p. The second is that splashing is suppressed by increasing the viscosity of the solvent. This is expressed by the Stokes number StSt, which influences the effective coefficient of restitution of colliding particles. We developed a phase diagram where the splashing onset is delineated as a function of both WepWe_p and StSt. A surprising result occurs at very small Stokes number, where not only splashing is suppressed but also plastic deformation of the droplet. This leads to a situation where droplets can bounce back after impact, an observation we are able to reproduce using discrete particle numerical simulations that take into account viscous interaction between particles and elastic energy
    corecore