1,263 research outputs found
How UK climate change policy has been made sustainable
UK climate change policy is based on the advice of the Committee on Climate Change established under the Climate Change Act 2008. This Committee is an independent, expert agency established as part of the reconceiving of the regulatory state as a response to the neo-liberal critique of older forms of regulation. But the quality of the advice given in the Committee’s recent Fourth Carbon Budget Review is so tendentious as to barely be able to be described as advice at all. This grave shortcoming poses the most serious questions for contemporary constitutional and regulatory processes
Coherent Electron-Phonon Coupling in Tailored Quantum Systems
The coupling between a two-level system and its environment leads to
decoherence. Within the context of coherent manipulation of electronic or
quasiparticle states in nanostructures, it is crucial to understand the sources
of decoherence. Here, we study the effect of electron-phonon coupling in a
graphene and an InAs nanowire double quantum dot. Our measurements reveal
oscillations of the double quantum dot current periodic in energy detuning
between the two levels. These periodic peaks are more pronounced in the
nanowire than in graphene, and disappear when the temperature is increased. We
attribute the oscillations to an interference effect between two alternative
inelastic decay paths involving acoustic phonons present in these materials.
This interpretation predicts the oscillations to wash out when temperature is
increased, as observed experimentally.Comment: 11 pages, 4 figure
Fractional quantum Hall effect in a quantum point contact at filling fraction 5/2
Recent theories suggest that the excitations of certain quantum Hall states
may have exotic braiding statistics which could be used to build topological
quantum gates. This has prompted an experimental push to study such states
using confined geometries where the statistics can be tested. We study the
transport properties of quantum point contacts (QPCs) fabricated on a
GaAs/AlGaAs two dimensional electron gas that exhibits well-developed
fractional quantum Hall effect, including at bulk filling fraction 5/2. We find
that a plateau at effective QPC filling factor 5/2 is identifiable in point
contacts with lithographic widths of 1.2 microns and 0.8 microns, but not 0.5
microns. We study the temperature and dc-current-bias dependence of the 5/2
plateau in the QPC, as well as neighboring fractional and integer plateaus in
the QPC while keeping the bulk at filling factor 3. Transport near QPC filling
factor 5/2 is consistent with a picture of chiral Luttinger liquid edge-states
with inter-edge tunneling, suggesting that an incompressible state at 5/2 forms
in this confined geometry
B-L Cosmic Strings in Heterotic Standard Models
E_{8} X E_{8} heterotic string and M-theory, when compactified on smooth
Calabi-Yau manifolds with SU(4) vector bundles, can give rise to softly broken
N=1 supersymmetric theories with the exact matter spectrum of the MSSM,
including three right-handed neutrinos and one Higgs-Higgs conjugate pair of
supermultiplets. These vacua have the SU(3)_{C} X SU(2)_{L} X U(1)_{Y} gauge
group of the standard model augmented by an additional gauged U(1)_{B-L}. Their
minimal content requires that the B-L symmetry be spontaneously broken by a
vacuum expectation value of at least one right-handed sneutrino. The soft
supersymmetry breaking operators can induce radiative breaking of the B-L gauge
symmetry with an acceptable B-L/electroweak hierarchy. In this paper, it is
shown that U(1)_{B-L} cosmic strings occur in this context, potentially with
both bosonic and fermionic superconductivity. We present a numerical analysis
that demonstrates that boson condensates can, in principle, form for theories
of this type. However, the weak Yukawa and gauge couplings of the right-handed
sneutrino suggests that bosonic superconductivity will not occur in the
simplest vacua in this context. The electroweak phase transition also disallows
fermion superconductivity, although substantial bound state fermion currents
can exist.Comment: 41 pages, 5 figure
Using fractional exhaled nitric oxide (FeNO) to diagnose steroid-responsive disease and guide asthma management in routine care
Acknowledgements We thank Robin Taylor for his informative thinking and publications on FeNO, which have helped to influence and direct the thinking of the authors. Funding Extraction of the real-life dataset was funded by Research in Real Life Limited, the analysis of the dataset and the writing of this manuscript were co-funded (50:50) by Research in Real Life Limited and Aerocrine.Peer reviewedPublisher PD
The Pioneer Anomaly
Radio-metric Doppler tracking data received from the Pioneer 10 and 11
spacecraft from heliocentric distances of 20-70 AU has consistently indicated
the presence of a small, anomalous, blue-shifted frequency drift uniformly
changing with a rate of ~6 x 10^{-9} Hz/s. Ultimately, the drift was
interpreted as a constant sunward deceleration of each particular spacecraft at
the level of a_P = (8.74 +/- 1.33) x 10^{-10} m/s^2. This apparent violation of
the Newton's gravitational inverse-square law has become known as the Pioneer
anomaly; the nature of this anomaly remains unexplained. In this review, we
summarize the current knowledge of the physical properties of the anomaly and
the conditions that led to its detection and characterization. We review
various mechanisms proposed to explain the anomaly and discuss the current
state of efforts to determine its nature. A comprehensive new investigation of
the anomalous behavior of the two Pioneers has begun recently. The new efforts
rely on the much-extended set of radio-metric Doppler data for both spacecraft
in conjunction with the newly available complete record of their telemetry
files and a large archive of original project documentation. As the new study
is yet to report its findings, this review provides the necessary background
for the new results to appear in the near future. In particular, we provide a
significant amount of information on the design, operations and behavior of the
two Pioneers during their entire missions, including descriptions of various
data formats and techniques used for their navigation and radio-science data
analysis. As most of this information was recovered relatively recently, it was
not used in the previous studies of the Pioneer anomaly, but it is critical for
the new investigation.Comment: 165 pages, 40 figures, 16 tables; accepted for publication in Living
Reviews in Relativit
The hand of Homo naledi
A nearly complete right hand of an adult hominin was recovered from the Rising Star cave system, South Africa. Based on associated hominin material, the bones of this hand are attributed to Homo naledi. This hand reveals a long, robust thumb and derived wrist morphology that is shared with Neandertals and modern humans, and considered adaptive for intensified manual manipulation. However, the finger bones are longer and more curved than in most australopiths, indicating frequent use of the hand during life for strong grasping during locomotor climbing and suspension. These markedly curved digits in combination with an otherwise human-like wrist and palm indicate a significant degree of climbing, despite the derived nature of many aspects of the hand and other regions of the postcranial skeleton in H. naledi
X-Ray Spectroscopy of Stars
(abridged) Non-degenerate stars of essentially all spectral classes are soft
X-ray sources. Low-mass stars on the cooler part of the main sequence and their
pre-main sequence predecessors define the dominant stellar population in the
galaxy by number. Their X-ray spectra are reminiscent, in the broadest sense,
of X-ray spectra from the solar corona. X-ray emission from cool stars is
indeed ascribed to magnetically trapped hot gas analogous to the solar coronal
plasma. Coronal structure, its thermal stratification and geometric extent can
be interpreted based on various spectral diagnostics. New features have been
identified in pre-main sequence stars; some of these may be related to
accretion shocks on the stellar surface, fluorescence on circumstellar disks
due to X-ray irradiation, or shock heating in stellar outflows. Massive, hot
stars clearly dominate the interaction with the galactic interstellar medium:
they are the main sources of ionizing radiation, mechanical energy and chemical
enrichment in galaxies. High-energy emission permits to probe some of the most
important processes at work in these stars, and put constraints on their most
peculiar feature: the stellar wind. Here, we review recent advances in our
understanding of cool and hot stars through the study of X-ray spectra, in
particular high-resolution spectra now available from XMM-Newton and Chandra.
We address issues related to coronal structure, flares, the composition of
coronal plasma, X-ray production in accretion streams and outflows, X-rays from
single OB-type stars, massive binaries, magnetic hot objects and evolved WR
stars.Comment: accepted for Astron. Astrophys. Rev., 98 journal pages, 30 figures
(partly multiple); some corrections made after proof stag
Sensitivity of projected long-term CO 2 emissions across the Shared Socioeconomic Pathways
Scenarios showing future greenhouse gas emissions are needed to estimate climate impacts and the mitigation efforts required for climate stabilization. Recently, the Shared Socioeconomic Pathways (SSPs) have been introduced to describe alternative social, economic and technical narratives, spanning a wide range of plausible futures in terms of challenges to mitigation and adaptation. Thus far the key drivers of the uncertainty in emissions projections have not been robustly disentangled. Here we assess the sensitivities of future CO 2 emissions to key drivers characterizing the SSPs. We use six state-of-the-art integrated assessment models with different structural characteristics, and study the impact of five families of parameters, related to population, income, energy efficiency, fossil fuel availability, and low-carbon energy technology development. A recently developed sensitivity analysis algorithm allows us to parsimoniously compute both the direct and interaction effects of each of these drivers on cumulative emissions. The study reveals that the SSP assumptions about energy intensity and economic growth are the most important determinants of future CO 2 emissions from energy combustion, both with and without a climate policy. Interaction terms between parameters are shown to be important determinants of the total sensitivities
Dental management considerations for the patient with an acquired coagulopathy. Part 1: Coagulopathies from systemic disease
Current teaching suggests that many patients are at risk for prolonged bleeding during and following invasive dental procedures, due to an acquired coagulopathy from systemic disease and/or from medications. However, treatment standards for these patients often are the result of long-standing dogma with little or no scientific basis. The medical history is critical for the identification of patients potentially at risk for prolonged bleeding from dental treatment. Some time-honoured laboratory tests have little or no use in community dental practice. Loss of functioning hepatic, renal, or bone marrow tissue predisposes to acquired coagulopathies through different mechanisms, but the relationship to oral haemostasis is poorly understood. Given the lack of established, science-based standards, proper dental management requires an understanding of certain principles of pathophysiology for these medical conditions and a few standard laboratory tests. Making changes in anticoagulant drug regimens are often unwarranted and/or expensive, and can put patients at far greater risk for morbidity and mortality than the unlikely outcome of postoperative bleeding. It should be recognised that prolonged bleeding is a rare event following invasive dental procedures, and therefore the vast majority of patients with suspected acquired coagulopathies are best managed in the community practice setting
- …
