92 research outputs found

    Faster and improved 3-D head digitization in MEG using Kinect

    Get PDF
    Accuracy in localizing the brain areas that generate neuromagnetic activity in magnetoencephalography (MEG) is dependent on properly co-registering MEG data to the participant's structural magnetic resonance image (MRI). Effective MEG-MRI co-registration is, in turn, dependent on how accurately we can digitize anatomical landmarks on the surface of the head. In this study, we compared the performance of three devices—Polhemus electromagnetic system, NextEngine laser scanner and Microsoft Kinect for Windows—for source localization accuracy and MEG-MRI co-registration. A calibrated phantom was used for verifying the source localization accuracy. The Kinect improved source localization accuracy over the Polhemus and the laser scanner by 2.23 mm (137%) and 0.81 mm (50%), respectively. MEG-MRI co-registration accuracy was verified on data from five healthy human participants, who received the digitization process using all three devices. The Kinect device captured approximately 2000 times more surface points than the Polhemus in one third of the time (1 min compared to 3 min) and thrice as many points as the NextEngine laser scanner. Following automated surface matching, the calculated mean MEG-MRI co-registration error for the Kinect was improved by 2.85 mm with respect to the Polhemus device, and equivalent to the laser scanner. Importantly, the Kinect device automatically aligns 20–30 images per second in real-time, reducing the limitations on participant head movement during digitization that are implicit in the NextEngine laser scan (~1 min). We conclude that the Kinect scanner is an effective device for head digitization in MEG, providing the necessary accuracy in source localization and MEG-MRI co-registration, while reducing digitization time

    Exploring the role of in-patient magnetic resonance imaging use among admitted ischemic stroke patients in improving patient outcomes and reducing healthcare resource utilization

    Get PDF
    PurposeDespite the diagnostic and etiological significance of in-patient MRI in ischemic stroke (IS), its utilization is considered resource-intensive, expensive, and thus limiting feasibility and relevance. This study investigated the utilization of in-patient MRI for IS patients and its impact on patient and healthcare resource utilization outcomes.MethodsThis retrospective registry-based study analyzed 1,956 IS patients admitted to Halifax’s QEII Health Centre between 2015 and 2019. Firstly, temporal trends of MRI and other neuroimaging utilization were evaluated. Secondly, we categorized the cohort into two groups (MRI vs. No MRI; in addition to a non-contrast CT) and investigated adjusted differences in patient outcomes at admission, discharge, and post-discharge using logistic regression. Additionally, we analyzed healthcare resource utilization using Poisson log-linear regression. Furthermore, patient outcomes significantly associated with MRI use underwent subgroup analysis for stroke severity (mild stroke including transient ischemic attack vs. moderate and severe stroke) and any acute stage treatment (thrombolytic or thrombectomy or both vs. no treatment) subgroups, while using an age and sex-adjusted logistic regression model.ResultsMRI was used in 40.5% patients; non-contrast CT in 99.3%, CT angiogram in 61.8%, and CT perfusion in 50.3%. Higher MRI utilization was associated with male sex, younger age, mild stroke, wake-up stroke, and no thrombolytic or thrombectomy treatment. MRI use was independently associated with lower in-hospital mortality (adjusted OR, 0.23; 95% CI, 0.15–0.36), lower symptomatic neurological status changes (0.64; 0.43–0.94), higher home discharge (1.32; 1.07–1.63), good functional outcomes at discharge (mRS score 0–2) (1.38; 1.11–1.72), lower 30-day stroke re-admission rates (0.48; 0.26–0.89), shorter hospital stays (regression coefficient, 0.92; 95% CI, 0.90–0.94), and reduced direct costs of hospitalization (0.90; 0.89–0.91). Subgroup analysis revealed significantly positive association of MRI use with most patient outcomes in moderate and severe strokes subgroup and non-acutely treated subgroup. Conversely, outcomes in mild strokes (including TIAs) subgroup and acute treatment subgroup were comparable regardless of MRI use.ConclusionA substantial proportion of admitted IS patients underwent MRI, and MRI use was associated with improved patient outcomes and reduced healthcare resource utilization. Considering the multifactorial nature of IS patient outcomes, further randomized controlled trials are suggested to investigate the role of increased MRI utilization in optimizing in-patient IS management

    Investigation of fMRI activation in the internal capsule

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Functional magnetic resonance imaging (fMRI) in white matter has long been considered controversial. Recently, this viewpoint has been challenged by an emerging body of evidence demonstrating white matter activation in the corpus callosum. The current study aimed to determine whether white matter activation could be detected outside of the corpus callosum, in the internal capsule. Data were acquired from a 4 T MRI using a specialized asymmetric spin echo spiral sequence. A motor task was selected to elicit activation in the posterior limb of the internal capsule.</p> <p>Results</p> <p>White matter fMRI activation was examined at the individual and group levels. Analyses revealed that activation was present in the posterior limb of the internal capsule in 80% of participants. These results provide further support for white matter fMRI activation.</p> <p>Conclusions</p> <p>The ability to visualize functionally active tracts has strong implications for the basic scientific study of connectivity and the clinical assessment of white matter disease.</p

    Validation and Calibration of a Model Used to Reconstruct Historical Exposure to Polycyclic Aromatic Hydrocarbons for Use in Epidemiologic Studies

    Get PDF
    OBJECTIVES: We previously developed a historical reconstruction model to estimate exposure to airborne polycyclic aromatic hydrocarbons (PAHs) from traffic back to 1960 for use in case–control studies of breast cancer risk. Here we report the results of four exercises to validate and calibrate the model. METHODS: Model predictions of benzo[a]pyrene (BaP) concentration in soil and carpet dust were tested against measurements collected at subjects’ homes at interview. In addition, predictions of air intake of BaP were compared with blood PAH–DNA adducts. These same soil, carpet, and blood measurements were used for model optimization. In a separate test of the meteorological dispersion part of the model, predictions of hourly concentrations of carbon monoxide from traffic were compared with data collected at a U.S. Environmental Protection Agency monitoring station. RESULTS: The data for soil, PAH–DNA adducts, and carbon monoxide concentrations were all consistent with model predictions. The carpet dust data were inconsistent, suggesting possible spatial confounding with PAH-containing contamination tracked in from outdoors or unmodeled cooking sources. BaP was found proportional to other PAHs in our soil and dust data, making it reasonable to use BaP historical data as a surrogate for other PAHs. Road intersections contributed 40–80% of both total emissions and average exposures, suggesting that the repertoire of simple markers of exposure, such as traffic counts and/or distance to nearest road, needs to be expanded to include distance to nearest intersection

    Indoor air pollution exposure from use of indoor stoves and fireplaces in association with breast cancer: a case-control study

    Get PDF
    Background: Previous studies suggest that polycyclic aromatic hydrocarbons (PAHs) may adversely affect breast cancer risk. Indoor air pollution from use of indoor stoves and/or fireplaces is an important source of ambient PAH exposure. However, the association between indoor stove/fireplace use and breast cancer risk is unknown. We hypothesized that indoor stove/fireplace use in a Long Island, New York study population would be positively associated with breast cancer and differ by material burned, and the duration and timing of exposure. We also hypothesized that the association would vary by breast cancer subtype defined by p53 mutation status, and interact with glutathione S-transferases GSTM1, T1, A1 and P1 polymorphisms. Methods: Population-based, case-control resources (1,508 cases/1,556 controls) were used to conduct unconditional logistic regression to estimate adjusted odds ratios (OR) and 95% confidence intervals (CI). Results: Breast cancer risk was increased among women reporting ever burning synthetic logs (which may also contain wood) in their homes (OR = 1.42, 95% CI 1.11, 1.84), but not for ever burning wood alone (OR = 0.93, 95% CI 0.77, 1.12). For synthetic log use, longer duration >7 years, older age at exposure (>20 years; OR = 1.65, 95% CI 1.02, 2.67) and 2 or more variants in GSTM1, T1, A1 or P1 (OR = 1.71, 95% CI 1.09, 2.69) were associated with increased risk. Conclusions: Burning wood or synthetic logs are both indoor PAH exposure sources; however, positive associations were only observed for burning synthetic logs, which was stronger for longer exposures, adult exposures, and those with multiple GST variant genotypes. Therefore, our results should be interpreted with care and require replication. Electronic supplementary material The online version of this article (doi:10.1186/1476-069X-13-108) contains supplementary material, which is available to authorized users
    corecore