169 research outputs found
Combinatorial Problems on -graphs
Bir\'{o}, Hujter, and Tuza introduced the concept of -graphs (1992),
intersection graphs of connected subgraphs of a subdivision of a graph .
They naturally generalize many important classes of graphs, e.g., interval
graphs and circular-arc graphs. We continue the study of these graph classes by
considering coloring, clique, and isomorphism problems on -graphs.
We show that for any fixed containing a certain 3-node, 6-edge multigraph
as a minor that the clique problem is APX-hard on -graphs and the
isomorphism problem is isomorphism-complete. We also provide positive results
on -graphs. Namely, when is a cactus the clique problem can be solved in
polynomial time. Also, when a graph has a Helly -representation, the
clique problem can be solved in polynomial time. Finally, we observe that one
can use treewidth techniques to show that both the -clique and list
-coloring problems are FPT on -graphs. These FPT results apply more
generally to treewidth-bounded graph classes where treewidth is bounded by a
function of the clique number
A note on concurrent graph sharing games
In the concurrent graph sharing game, two players, called First and Second,
share the vertices of a connected graph with positive vertex-weights summing up
to as follows. The game begins with First taking any vertex. In each
proceeding round, the player with the smaller sum of collected weights so far
chooses a non-taken vertex adjacent to a vertex which has been taken, i.e., the
set of all taken vertices remains connected and one new vertex is taken in
every round. (It is assumed that no two subsets of vertices have the same sum
of weights.) One can imagine the players consume their taken vertex over a time
proportional to its weight, before choosing a next vertex. In this note we show
that First has a strategy to guarantee vertices of weight at least
regardless of the graph and how it is weighted. This is best-possible already
when the graph is a cycle. Moreover, if the graph is a tree First can guarantee
vertices of weight at least , which is clearly best-possible.Comment: expanded introduction and conclusion
Edge Intersection Graphs of L-Shaped Paths in Grids
In this paper we continue the study of the edge intersection graphs of one
(or zero) bend paths on a rectangular grid. That is, the edge intersection
graphs where each vertex is represented by one of the following shapes:
,, , , and we consider zero bend
paths (i.e., | and ) to be degenerate s. These graphs, called
-EPG graphs, were first introduced by Golumbic et al (2009). We consider
the natural subclasses of -EPG formed by the subsets of the four single
bend shapes (i.e., {}, {,},
{,}, and {,,}) and we
denote the classes by [], [,],
[,], and [,,]
respectively. Note: all other subsets are isomorphic to these up to 90 degree
rotation. We show that testing for membership in each of these classes is
NP-complete and observe the expected strict inclusions and incomparability
(i.e., [] [,],
[,] [,,]
-EPG; also, [,] is incomparable with
[,]). Additionally, we give characterizations and
polytime recognition algorithms for special subclasses of Split
[].Comment: 14 pages, to appear in DAM special issue for LAGOS'1
The vertex leafage of chordal graphs
Every chordal graph can be represented as the intersection graph of a
collection of subtrees of a host tree, a so-called {\em tree model} of . The
leafage of a connected chordal graph is the minimum number of
leaves of the host tree of a tree model of . The vertex leafage \vl(G) is
the smallest number such that there exists a tree model of in which
every subtree has at most leaves. The leafage is a polynomially computable
parameter by the result of \cite{esa}. In this contribution, we study the
vertex leafage.
We prove for every fixed that deciding whether the vertex leafage
of a given chordal graph is at most is NP-complete by proving a stronger
result, namely that the problem is NP-complete on split graphs with vertex
leafage of at most . On the other hand, for chordal graphs of leafage at
most , we show that the vertex leafage can be calculated in time
. Finally, we prove that there exists a tree model that realizes
both the leafage and the vertex leafage of . Notably, for every path graph
, there exists a path model with leaves in the host tree and it
can be computed in time
On Vertex- and Empty-Ply Proximity Drawings
We initiate the study of the vertex-ply of straight-line drawings, as a
relaxation of the recently introduced ply number. Consider the disks centered
at each vertex with radius equal to half the length of the longest edge
incident to the vertex. The vertex-ply of a drawing is determined by the vertex
covered by the maximum number of disks. The main motivation for considering
this relaxation is to relate the concept of ply to proximity drawings. In fact,
if we interpret the set of disks as proximity regions, a drawing with
vertex-ply number 1 can be seen as a weak proximity drawing, which we call
empty-ply drawing. We show non-trivial relationships between the ply number and
the vertex-ply number. Then, we focus on empty-ply drawings, proving some
properties and studying what classes of graphs admit such drawings. Finally, we
prove a lower bound on the ply and the vertex-ply of planar drawings.Comment: Appears in the Proceedings of the 25th International Symposium on
Graph Drawing and Network Visualization (GD 2017
Snakes and Ladders:a Treewidth Story
Let be an undirected graph. We say that contains a ladder of length if the grid graph is an induced subgraph of that is only connected to the rest of via its four cornerpoints. We prove that if all the ladders contained in are reduced to length 4, the treewidth remains unchanged (and that this bound is tight). Our result indicates that, when computing the treewidth of a graph, long ladders can simply be reduced, and that minimal forbidden minors for bounded treewidth graphs cannot contain long ladders. Our result also settles an open problem from algorithmic phylogenetics: the common chain reduction rule, used to simplify the comparison of two evolutionary trees, is treewidth-preserving in the display graph of the two trees
Monotone Arc Diagrams with Few Biarcs
We show that every planar graph has a monotone topological 2-page book embedding where at most (4n-10)/5 (of potentially 3n-6) edges cross the spine, and every edge crosses the spine at most once; such an edge is called a biarc. We can also guarantee that all edges that cross the spine cross it in the same direction (e.g., from bottom to top). For planar 3-trees we can further improve the bound to (3n-9)/4, and for so-called Kleetopes we obtain a bound of at most (n-8)/3 edges that cross the spine. The bound for Kleetopes is tight, even if the drawing is not required to be monotone. A Kleetope is a plane triangulation that is derived from another plane triangulation T by inserting a new vertex v_f into each face f of T and then connecting v_f to the three vertices of f
Brief Announcement: Approximation Schemes for Geometric Coverage Problems
In this announcement, we show that the classical Maximum Coverage problem (MC) admits a PTAS via local search in essentially all cases where the corresponding instances of Set Cover (SC) admit a PTAS via the local search approach by Mustafa and Ray [Nabil H. Mustafa and Saurabh Ray, 2010]. As a corollary, we answer an open question by Badanidiyuru, Kleinberg, and Lee [Ashwinkumar Badanidiyuru et al., 2012] regarding half-spaces in R^3 thereby settling the existence of PTASs for essentially all natural cases of geometric MC problems. As an intermediate result, we show a color-balanced version of the classical planar subdivision theorem by Frederickson [Greg N. Frederickson, 1987]. We believe that some of our ideas may be useful for analyzing local search in other settings involving a hard cardinality constraint
- …
