169 research outputs found

    Combinatorial Problems on HH-graphs

    Full text link
    Bir\'{o}, Hujter, and Tuza introduced the concept of HH-graphs (1992), intersection graphs of connected subgraphs of a subdivision of a graph HH. They naturally generalize many important classes of graphs, e.g., interval graphs and circular-arc graphs. We continue the study of these graph classes by considering coloring, clique, and isomorphism problems on HH-graphs. We show that for any fixed HH containing a certain 3-node, 6-edge multigraph as a minor that the clique problem is APX-hard on HH-graphs and the isomorphism problem is isomorphism-complete. We also provide positive results on HH-graphs. Namely, when HH is a cactus the clique problem can be solved in polynomial time. Also, when a graph GG has a Helly HH-representation, the clique problem can be solved in polynomial time. Finally, we observe that one can use treewidth techniques to show that both the kk-clique and list kk-coloring problems are FPT on HH-graphs. These FPT results apply more generally to treewidth-bounded graph classes where treewidth is bounded by a function of the clique number

    A note on concurrent graph sharing games

    Full text link
    In the concurrent graph sharing game, two players, called First and Second, share the vertices of a connected graph with positive vertex-weights summing up to 11 as follows. The game begins with First taking any vertex. In each proceeding round, the player with the smaller sum of collected weights so far chooses a non-taken vertex adjacent to a vertex which has been taken, i.e., the set of all taken vertices remains connected and one new vertex is taken in every round. (It is assumed that no two subsets of vertices have the same sum of weights.) One can imagine the players consume their taken vertex over a time proportional to its weight, before choosing a next vertex. In this note we show that First has a strategy to guarantee vertices of weight at least 1/31/3 regardless of the graph and how it is weighted. This is best-possible already when the graph is a cycle. Moreover, if the graph is a tree First can guarantee vertices of weight at least 1/21/2, which is clearly best-possible.Comment: expanded introduction and conclusion

    Edge Intersection Graphs of L-Shaped Paths in Grids

    Full text link
    In this paper we continue the study of the edge intersection graphs of one (or zero) bend paths on a rectangular grid. That is, the edge intersection graphs where each vertex is represented by one of the following shapes: \llcorner,\ulcorner, \urcorner, \lrcorner, and we consider zero bend paths (i.e., | and -) to be degenerate \llcorners. These graphs, called B1B_1-EPG graphs, were first introduced by Golumbic et al (2009). We consider the natural subclasses of B1B_1-EPG formed by the subsets of the four single bend shapes (i.e., {\llcorner}, {\llcorner,\ulcorner}, {\llcorner,\urcorner}, and {\llcorner,\ulcorner,\urcorner}) and we denote the classes by [\llcorner], [\llcorner,\ulcorner], [\llcorner,\urcorner], and [\llcorner,\ulcorner,\urcorner] respectively. Note: all other subsets are isomorphic to these up to 90 degree rotation. We show that testing for membership in each of these classes is NP-complete and observe the expected strict inclusions and incomparability (i.e., [\llcorner] \subsetneq [\llcorner,\ulcorner], [\llcorner,\urcorner] \subsetneq [\llcorner,\ulcorner,\urcorner] \subsetneq B1B_1-EPG; also, [\llcorner,\ulcorner] is incomparable with [\llcorner,\urcorner]). Additionally, we give characterizations and polytime recognition algorithms for special subclasses of Split \cap [\llcorner].Comment: 14 pages, to appear in DAM special issue for LAGOS'1

    The vertex leafage of chordal graphs

    Full text link
    Every chordal graph GG can be represented as the intersection graph of a collection of subtrees of a host tree, a so-called {\em tree model} of GG. The leafage (G)\ell(G) of a connected chordal graph GG is the minimum number of leaves of the host tree of a tree model of GG. The vertex leafage \vl(G) is the smallest number kk such that there exists a tree model of GG in which every subtree has at most kk leaves. The leafage is a polynomially computable parameter by the result of \cite{esa}. In this contribution, we study the vertex leafage. We prove for every fixed k3k\geq 3 that deciding whether the vertex leafage of a given chordal graph is at most kk is NP-complete by proving a stronger result, namely that the problem is NP-complete on split graphs with vertex leafage of at most k+1k+1. On the other hand, for chordal graphs of leafage at most \ell, we show that the vertex leafage can be calculated in time nO()n^{O(\ell)}. Finally, we prove that there exists a tree model that realizes both the leafage and the vertex leafage of GG. Notably, for every path graph GG, there exists a path model with (G)\ell(G) leaves in the host tree and it can be computed in O(n3)O(n^3) time

    On Vertex- and Empty-Ply Proximity Drawings

    Full text link
    We initiate the study of the vertex-ply of straight-line drawings, as a relaxation of the recently introduced ply number. Consider the disks centered at each vertex with radius equal to half the length of the longest edge incident to the vertex. The vertex-ply of a drawing is determined by the vertex covered by the maximum number of disks. The main motivation for considering this relaxation is to relate the concept of ply to proximity drawings. In fact, if we interpret the set of disks as proximity regions, a drawing with vertex-ply number 1 can be seen as a weak proximity drawing, which we call empty-ply drawing. We show non-trivial relationships between the ply number and the vertex-ply number. Then, we focus on empty-ply drawings, proving some properties and studying what classes of graphs admit such drawings. Finally, we prove a lower bound on the ply and the vertex-ply of planar drawings.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    Snakes and Ladders:a Treewidth Story

    Get PDF
    Let GG be an undirected graph. We say that GG contains a ladder of length kk if the 2×(k+1)2 \times (k+1) grid graph is an induced subgraph of GG that is only connected to the rest of GG via its four cornerpoints. We prove that if all the ladders contained in GG are reduced to length 4, the treewidth remains unchanged (and that this bound is tight). Our result indicates that, when computing the treewidth of a graph, long ladders can simply be reduced, and that minimal forbidden minors for bounded treewidth graphs cannot contain long ladders. Our result also settles an open problem from algorithmic phylogenetics: the common chain reduction rule, used to simplify the comparison of two evolutionary trees, is treewidth-preserving in the display graph of the two trees

    Monotone Arc Diagrams with Few Biarcs

    Get PDF
    We show that every planar graph has a monotone topological 2-page book embedding where at most (4n-10)/5 (of potentially 3n-6) edges cross the spine, and every edge crosses the spine at most once; such an edge is called a biarc. We can also guarantee that all edges that cross the spine cross it in the same direction (e.g., from bottom to top). For planar 3-trees we can further improve the bound to (3n-9)/4, and for so-called Kleetopes we obtain a bound of at most (n-8)/3 edges that cross the spine. The bound for Kleetopes is tight, even if the drawing is not required to be monotone. A Kleetope is a plane triangulation that is derived from another plane triangulation T by inserting a new vertex v_f into each face f of T and then connecting v_f to the three vertices of f

    Brief Announcement: Approximation Schemes for Geometric Coverage Problems

    Get PDF
    In this announcement, we show that the classical Maximum Coverage problem (MC) admits a PTAS via local search in essentially all cases where the corresponding instances of Set Cover (SC) admit a PTAS via the local search approach by Mustafa and Ray [Nabil H. Mustafa and Saurabh Ray, 2010]. As a corollary, we answer an open question by Badanidiyuru, Kleinberg, and Lee [Ashwinkumar Badanidiyuru et al., 2012] regarding half-spaces in R^3 thereby settling the existence of PTASs for essentially all natural cases of geometric MC problems. As an intermediate result, we show a color-balanced version of the classical planar subdivision theorem by Frederickson [Greg N. Frederickson, 1987]. We believe that some of our ideas may be useful for analyzing local search in other settings involving a hard cardinality constraint
    corecore