107 research outputs found
Participant‐Reported Health Status Predicts Cardiovascular and All‐Cause Mortality Independent of Established and Nontraditional Biomarkers: Evidence From a Representative US Sample
Background: Participant‐reported health status is a key indicator of cardiovascular health, but its predictive value relative to traditional and nontraditional risk factors is unknown. We evaluated whether participant‐reported health status, as indexed by self‐rated health, predicted cardiovascular disease, and all‐cause mortality risk excess of 10‐year atherosclerotic cardiovascular disease (ASCVD) risk scores and 5 nontraditional risk biomarkers.
Methods and Results: Analyses used prospective observational data from the 1999–2002 National Health and Nutrition Examination Surveys among those aged 40 to 79 years (N=4677). Vital status was ascertained through 2011, during which there were 850 deaths, 206 from cardiovascular disease (CVD). We regressed CVD and all‐cause mortality on standardized values of self‐rated health in survival models, adjusting for age, sex, education, existing chronic disease, race/ethnicity, ASCVD risk, and standardized biomarkers (fibrinogen, C‐reactive protein [CRP], triglycerides, albumin, and uric acid). In sociodemographically adjusted models, a 1‐SD decrease in self‐rated health was associated with increased risk of CVD mortality (hazard ratio [HR], 1.92; 95% CI, 1.51–2.45; P<0.001), and this hazard remained strong after adjusting for ASCVD risk and nontraditional biomarkers (HR, 1.79; 95% CI, 1.42–2.26; P<0.001). Self‐rated health also predicted all‐cause mortality even after adjustment for ASCVD risk and nontraditional biomarkers (HR, 1.50; 95% CI, 1.35–1.66; P<0.001).
Conclusions: Self‐rated health provides prognostic information beyond that captured by traditional ASCVD risk assessments and by nontraditional CVD biomarkers. Consideration of self‐rated health in combination with traditional risk factors may facilitate risk assessment and clinical care
Spectroscopy of Luminous Compact Blue Galaxies in Distant Clusters I. Spectroscopic Data
We used the DEIMOS spectrograph on the Keck II Telescope to obtain spectra of
galaxies in the fields of five distant, rich galaxy clusters over the redshift
range 0.5 < z < 0.9 in a search for luminous, compact, blue galaxies (LCBGs).
Unlike traditional studies of galaxy clusters, we preferentially targeted blue
cluster members identified via multi-band photometric pre-selection based on
imaging data from the WIYN telescope. Of the 1288 sources that we targeted, we
determined secure spectroscopic redshifts for 848 sources, yielding a total
success rate of 66%. Our redshift measurements are in good agreement with those
previously reported in the literature, except for 11 targets which we believe
were previously in error. Within our sample, we confirm the presence of 53
LCBGs in the five galaxy clusters. The clusters all stand out as distinct peaks
in the redshift distribution of LCBGs with the average number density of LCBGs
ranging from 1.65+-0.25 Mpc^-3 at z=0.55 to 3.13+-0.65 Mpc^-3 at z=0.8. The
number density of LCBGs in clustes exceeds the field desnity by a factor of
749+-116 at z=0.55; at z=0.8, the corresponding ratio is E=416+-95. At z=0.55,
this enhancement is well above that seen for blue galaxies or the overall
cluster population, indicating that LCBGs are preferentially triggered in
high-density environments at intermediate redshifts.Comment: 45 pages, 19 figures, accepted to ApJ. For Full resolution figure and
data tables, see http://www.salt.ac.za/~crawford/projects/deimos
A novel intervention for acute stress reaction: exploring the feasibility of ReSTART among Norwegian soldiers
Background: Soldiers in combat may experience acute stress reactions (ASRs) in response to trauma. This can disrupt function, increasing both immediate physical danger and the risk for post-trauma mental health sequelae. There are few reported strategies for managing ASRs; however, recent studies suggest a novel peer-based intervention as a promising approach.
Objectives: This study assesses the feasibility of ReSTART training, a peer-based course designed to prepare soldiers to manage ASRs. ReSTART builds on programmes established by US and Israeli militaries. The current study evaluates the ReSTART programme in a Norwegian setting, across distinct groups of soldiers, professionals and conscripts.
Methods: Participants included professional soldiers deploying to Mali and conscripts with 6 months of service, who completed the ReSTART training course and surveys administered pre- and post-training. These surveys assessed attitudes and programme acceptability. Analyses included 74 soldiers who provided complete survey responses.
Results: ReSTART training received high ratings in terms of usefulness, relevance, and importance in managing ASRs. From pre- to post-training, respondents had significant increases in positive attitudes towards ASR management and confidence in handling ASRs personally, and at the unit level; decreases in stigma-related attitudes associated with ASRs; and increased perception of leadership emphasizing ASR management.
Conclusions: ReSTART training shows potential as an effective tool when preparing soldiers to manage ASRs in high-risk environments, enhancing military units’ capacity to support each other and effectively respond to stress-induced functional disruptions. This study adds evidence supporting the utility of peer-based ASR management in operational settings and highlights the need for broader implementation and systematic evaluation.publishedVersio
Double Beta Decay
We review recent developments in double-beta decay, focusing on what can be
learned about the three light neutrinos in future experiments. We examine the
effects of uncertainties in already measured neutrino parameters and in
calculated nuclear matrix elements on the interpretation of upcoming
double-beta decay measurements. We then review a number of proposed
experiments.Comment: Some typos corrected, references corrected and added. A less blurry
version of figure 3 is available from authors. 41 pages, 5 figures, submitted
to J. Phys.
Unitary Standard Model from Spontaneous Dimensional Reduction and Weak Boson Scattering at the LHC
Spontaneous dimensional reduction (SDR) is a striking phenomenon predicted by
a number of quantum gravity approaches which all indicate that the spacetime
dimensions get reduced at high energies. In this work, we formulate an
effective theory of electroweak interactions based upon the standard model,
incorporating the spontaneous reduction of space-dimensions at TeV scale. The
electroweak gauge symmetry is nonlinearly realized with or without a Higgs
boson. We demonstrate that the SDR ensures good high energy behavior and
predicts unitary weak boson scattering. For a light Higgs boson of mass 125GeV,
the TeV-scale SDR gives a natural solution to the hierarchy problem. Such a
light Higgs boson can have induced anomalous gauge couplings from the TeV-scale
SDR. We find that the corresponding WW scattering cross sections become unitary
at TeV scale, but exhibit different behaviors from that of the 4d standard
model. These can be discriminated by the WW scattering experiments at the LHC.Comment: 38pp, Eur.Phys.J.(in Press); extended discussions for testing non-SM
Higgs boson(125GeV) via WW scattering; minor clarifications added; references
added; a concise companion is given in the short PLB letter arXiv:1301.457
The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the extended Baryon Oscillation Spectroscopic Survey and from the second phase of the Apache Point Observatory Galactic Evolution Experiment
The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in
operation since July 2014. This paper describes the second data release from
this phase, and the fourteenth from SDSS overall (making this, Data Release
Fourteen or DR14). This release makes public data taken by SDSS-IV in its first
two years of operation (July 2014-2016). Like all previous SDSS releases, DR14
is cumulative, including the most recent reductions and calibrations of all
data taken by SDSS since the first phase began operations in 2000. New in DR14
is the first public release of data from the extended Baryon Oscillation
Spectroscopic Survey (eBOSS); the first data from the second phase of the
Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2),
including stellar parameter estimates from an innovative data driven machine
learning algorithm known as "The Cannon"; and almost twice as many data cubes
from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous
release (N = 2812 in total). This paper describes the location and format of
the publicly available data from SDSS-IV surveys. We provide references to the
important technical papers describing how these data have been taken (both
targeting and observation details) and processed for scientific use. The SDSS
website (www.sdss.org) has been updated for this release, and provides links to
data downloads, as well as tutorials and examples of data use. SDSS-IV is
planning to continue to collect astronomical data until 2020, and will be
followed by SDSS-V.Comment: SDSS-IV collaboration alphabetical author data release paper. DR14
happened on 31st July 2017. 19 pages, 5 figures. Accepted by ApJS on 28th Nov
2017 (this is the "post-print" and "post-proofs" version; minor corrections
only from v1, and most of errors found in proofs corrected
Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe
We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median ). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July
Sloan Digital Sky Survey IV: mapping the Milky Way, nearby galaxies, and the distant universe
We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median ). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July
- …
