1,994 research outputs found

    An Analysis of Recent Rates of Return and of the Secondary Market for Public Real Estate Limited Partnerships

    Get PDF
    This study analyzes the rates of return of 53 Real Estate Limited Partnerships (RELPs). The authors utilize market-derived figures for terminal values, thus providing more realistic computations of IRRs than have appeared in other studies. The authors also examine the effect of holding period on RELP returns. RELP IRRs were found to be significantly different from those reported in other studies. RELP IRRs were also found to be highly correlated to holding period. The authors also provide an extensive introduction to the relatively new and evolving secondary market for RELPs called the National Partnership Exchange (NAPEX).

    Comparison of Outcomes between Endoscopic and Transcleral Cyclophotocoagulation.

    Get PDF
    Importance: Traditionally cyclophotocoagulation has been reserved as a treatment of last resort for eyes with advanced stage glaucoma, but increasingly it is offered to eyes with less severe disease. Endoscopic approaches in particular are utilized in increasing numbers of patients despite only a small number of publications on its results. Objective: The purpose of this study was to compare the efficacy and safety of endoscopic and transcleral cyclophotocoagulation (ECP and TCP) procedures in eyes with refractory glaucomas. Design, Setting, and Participants: A chart review was performed on consecutive patients who underwent ECP and TCP at a tertiary ophthalmology care center between January 2000 and December 2010. Cases with fewer than 3 months of follow-up or that had concurrent pressure reducing procedures were excluded. The main outcome measures examined were intraocular pressure (IOP), number of glaucoma medications, best corrected visual acuity (BCVA), additional glaucoma procedure required, and complications. Main Outcomes and Measures: Forty-two eyes (42 patients) that underwent ECP and forty-four eyes (44 patients) that underwent TCP were identified. The TCP group had a statistically higher mean age (71.2 ± 16.7 vs. 58.1 ± 22.9 years, respectively), larger proportion of neovascular glaucoma (40.9% vs. 16.7%), worse initial BCVA (logMAR 2.86 vs. 1.81), and higher preoperative IOP (45.3 vs. 26.6 mmHg) than the ECP group. At 12 months follow-up, the mean IOP difference between groups was not statistically significant, although the change in IOP from baseline to 12 months was greater for the TCP group (p = 0.006). The rates of progression to no light perception (NLP) and phthisis bulbi were significantly higher amongst TCP eyes than ECP eyes (27.2% vs. 4.8%, p = 0.017, and 20.5% vs. 0%, p = 0.003, respectively). Of these eyes that progressed, a majority had neovascular glaucoma (NVG). Corneal decompensation was the most frequent complication following ECP (11.9%). Conclusions and Relevance: In patients with preoperative BCVA of 20/400 or better, overall complication rates (cystoid macular edema, exudative retinal detachment, inflammation, cornea decompensation) were higher after ECP than with TCP. In refractory glaucomas in a real world setting (not a trial), TCP was more frequently used in ischemic eyes. TCP was associated with a higher rate of progression to phthisis bulbi and loss of light perception than ECP. However, ECP was associated with a clinically significant rate of corneal decompensation. These outcomes likely were related to the severity of underlying ocular diseases found in these eyes

    Air Pollution Exposure and Abnormal Glucose Tolerance during Pregnancy: The Project Viva Cohort

    Get PDF
    Background: Exposure to fine particulate matter (PM with diameter ≤ 2.5 μm; PM2.5) has been linked to type 2 diabetes mellitus, but associations with hyperglycemia in pregnancy have not been well studied. Methods: We studied Boston, Massachusetts–area pregnant women without known diabetes. We identified impaired glucose tolerance (IGT) and gestational diabetes mellitus (GDM) during pregnancy from clinical glucose tolerance tests at median 28.1 weeks gestation. We used residential addresses to estimate second-trimester PM2.5 and black carbon exposure via a central monitoring site and spatiotemporal models. We estimated residential traffic density and roadway proximity as surrogates for exposure to traffic-related air pollution. We performed multinomial logistic regression analyses adjusted for sociodemographic covariates, and used multiple imputation to account for missing data. Results: Of 2,093 women, 65 (3%) had IGT and 118 (6%) had GDM. Second-trimester spatiotemporal exposures ranged from 8.5 to 15.9 μg/m3 for PM2.5 and from 0.1 to 1.7 μg/m3 for black carbon. Traffic density was 0–30,860 vehicles/day × length of road (kilometers) within 100 m; 281 (13%) women lived ≤ 200 m from a major road. The prevalence of IGT was elevated in the highest (vs. lowest) quartile of exposure to spatiotemporal PM2.5 [odds ratio (OR) = 2.63; 95% CI: 1.15, 6.01] and traffic density (OR = 2.66; 95% CI: 1.24, 5.71). IGT also was positively associated with other exposure measures, although associations were not statistically significant. No pollutant exposures were positively associated with GDM. Conclusions: Greater exposure to PM2.5 and other traffic-related pollutants during pregnancy was associated with IGT but not GDM. Air pollution may contribute to abnormal glycemia in pregnancy. Citation: Fleisch AF, Gold DR, Rifas-Shiman SL, Koutrakis P, Schwartz JD, Kloog I, Melly S, Coull BA, Zanobetti A, Gillman MW, Oken E. 2014. Air pollution exposure and abnormal glucose tolerance during pregnancy: the Project Viva Cohort. Environ Health Perspect 122:378–383; http://dx.doi.org/10.1289/ehp.130706

    Exploring impulsive solar magnetic energy release and particle acceleration with focused hard X-ray imaging spectroscopy

    Get PDF
    How impulsive magnetic energy release leads to solar eruptions and how those eruptions are energized and evolve are vital unsolved problems in Heliophysics. The standard model for solar eruptions summarizes our current understanding of these events. Magnetic energy in the corona is released through drastic restructuring of the magnetic field via reconnection. Electrons and ions are then accelerated by poorly understood processes. Theories include contracting loops, merging magnetic islands, stochastic acceleration, and turbulence at shocks, among others. Although this basic model is well established, the fundamental physics is poorly understood. HXR observations using grazing-incidence focusing optics can now probe all of the key regions of the standard model. These include two above-the-looptop (ALT) sources which bookend the reconnection region and are likely the sites of particle acceleration and direct heating. The science achievable by a direct HXR imaging instrument can be summarized by the following science questions and objectives which are some of the most outstanding issues in solar physics (1) How are particles accelerated at the Sun? (1a) Where are electrons accelerated and on what time scales? (1b) What fraction of electrons is accelerated out of the ambient medium? (2) How does magnetic energy release on the Sun lead to flares and eruptions? A Focusing Optics X-ray Solar Imager (FOXSI) instrument, which can be built now using proven technology and at modest cost, would enable revolutionary advancements in our understanding of impulsive magnetic energy release and particle acceleration, a process which is known to occur at the Sun but also throughout the Universe

    Age-related macular degeneration: experimental and emerging treatments

    Get PDF
    Jean Pierre Hubschman, Shantan Reddy, Steven D SchwartzJules Stein Eye Institute, Department of Ophthalmology, University of California, David Geffen School of Medicine, Los Angeles, California, USAPurpose: This essay reviews the experimental treatments and new imaging modalities that are currently being explored by investigators to help treat patients with age-related macular degeneration (AMD).Design: Interpretative essay.Methods: Literature review and interpretation.Results: Experimental treatments to preserve vision in patients with exudative AMD include blocking vascular endothelial growth factor (VEGF), binding VEGF, and modulating the VEGF receptors. Investigators are also attempting to block signal transduction with receptor tyrosine kinase inhibitors. Experimental treatments for non-exudative AMD include agents that target inflammation, oxidative stress, and implement immune-modulation. The effectiveness of these newer pharmacologic agents has the potential to grow exponentially when used in combination with new and improved imaging modalities that can help identify disease earlier and follow treatment response more precisely.Conclusion: With a better understanding, at the genetic and molecular level, of AMD and the development of superior imaging modalities, investigators are able to offer treatment options that may offer unprecedented visual gains while reducing the need for repetitive treatments.Keywords: age-related macular degeneration, VEGF, SiRNA, PED

    Age-related macular degeneration: current treatments

    Get PDF
    PurposeAlthough important progress has been made in understanding age-related macular degeneration (AMD), management of the disease continues to be a challenge. AMD research has led to a widening of available treatment options and improved prognostic perspectives. This essay reviews these treatment options.DesignInterpretative essay.MethodsLiterature review and interpretation.ResultsCurrent treatments to preserve vision in patients with non-exudative AMD include antioxidant vitamins and mineral supplementations. Exudative AMD is currently most often treated monthly with anti-VEGF intravitreal injections. However, investigators are beginning to experiment with combination therapy and surgical approaches in an attempt to limit the number of treatment and reduce the financial burden on the health care system.ConclusionBy better understanding the basis and pathogenesis of AMD, newer therapies will continue to be developed that target specific pathways in patients with AMD, with the hoped for outcome of better management of the disease and improved visual acuity

    Functionalisation of Ti6Al4V components fabricated using selective laser melting with a bioactive compound

    Get PDF
    Surface modification of an implant with a biomolecule is used to improve its biocompatibility and to reduce post-implant complications. In this study, a novel approach has been used to functionalise phosphonic acid monolayers with a drug. Ti6Al4V components fabricated using selective laser melting (SLM) were functionalised with Paracetamol (a pharmaceutically relevant biomolecule) using phosphonic acid based self-assembled monolayers (SAMs). The attachment, stability of the monolayers on the SLM fabricated surface and functionalisation of SAMs with Paracetamol were studied using X-ray photoelectron spectroscopy (XPS) and surface wettability measurements. The obtained results confirmed that SAMs were stable on the Ti6Al4V surface for over four weeks and then began to desorb from the surface. The reaction used to functionalise the phosphonic acid monolayers with Paracetamol was noted to be successful. Thus, the proposed method has the potential to immobilise drugs/proteins to SAM coated surfaces and improve their biocompatibility and reduce post-implant complications
    corecore