9,095 research outputs found
Piloted simulation of an air-ground profile negotiation process in a time-based Air Traffic Control environment
Historically, development of airborne flight management systems (FMS) and ground-based air traffic control (ATC) systems has tended to focus on different objectives with little consideration for operational integration. A joint program, between NASA's Ames Research Center (Ames) and Langley Research Center (Langley), is underway to investigate the issues of, and develop systems for, the integration of ATC and airborne automation systems. A simulation study was conducted to evaluate a profile negotiation process (PNP) between the Center/TRACON Automation System (CTAS) and an aircraft equipped with a four-dimensional flight management system (4D FMS). Prototype procedures were developed to support the functional implementation of this process. The PNP was designed to provide an arrival trajectory solution which satisfies the separation requirements of ATC while remaining as close as possible to the aircraft's preferred trajectory. Results from the experiment indicate the potential for successful incorporation of aircraft-preferred arrival trajectories in the CTAS automation environment. Fuel savings on the order of 2 percent to 8 percent, compared to fuel required for the baseline CTAS arrival speed strategy, were achieved in the test scenarios. The data link procedures and clearances developed for this experiment, while providing the necessary functionality, were found to be operationally unacceptable to the pilots. In particular, additional pilot control and understanding of the proposed aircraft-preferred trajectory, and a simplified clearance procedure were cited as necessary for operational implementation of the concept
Airborne Four-Dimensional Flight Management in a Time-based Air Traffic Control Environment
Advanced Air Traffic Control (ATC) systems are being developed which contain time-based (4D) trajectory predictions of aircraft. Airborne flight management systems (FMS) exist or are being developed with similar 4D trajectory generation capabilities. Differences between the ATC generated profiles and those generated by the airborne 4D FMS may introduce system problems. A simulation experiment was conducted to explore integration of a 4D equipped aircraft into a 4D ATC system. The NASA Langley Transport Systems Research Vehicle cockpit simulator was linked in real time to the NASA Ames Descent Advisor ATC simulation for this effort. Candidate procedures for handling 4D equipped aircraft were devised and traffic scenarios established which required time delays absorbed through speed control alone or in combination with path stretching. Dissimilarities in 4D speed strategies between airborne and ATC generated trajectories were tested in these scenarios. The 4D procedures and FMS operation were well received by airline pilot test subjects, who achieved an arrival accuracy at the metering fix of 2.9 seconds standard deviation time error. The amount and nature of the information transmitted during a time clearance were found to be somewhat of a problem using the voice radio communication channel. Dissimilarities between airborne and ATC-generated speed strategies were found to be a problem when the traffic remained on established routes. It was more efficient for 4D equipped aircraft to fly trajectories with similar, though less fuel efficient, speeds which conform to the ATC strategy. Heavy traffic conditions, where time delays forced off-route path stretching, were found to produce a potential operational benefit of the airborne 4D FMS
GLObal Backscatter Experiment (GLOBE) Pacific survey mission
NASA conducted the GLObal Backscatter Experiment (GLOBE) Survey Mission over the near coastal and remote Pacific Ocean during 6 to 30 Nov. 1989 (GLOBE 1) and 13 May to 5 Jun. 1990 (GLOBE 2). These missions studied the optical, physical, and chemical properties of atmospheric aerosols. Particular emphasis was given to the magnitude and spatial variability of aerosol backscatter coefficients at mid-infrared wavelengths, and to the remote middle and upper troposphere, where these aerosol properties are poorly understood. Survey instruments were selected to provide either direct beta measurements at the key wavelengths, empirical links with long term or global scale aerosol climatologies, or aerosol microphysics data required to model any of these quantities. The survey deployment included both long distance 6 to 8 hour transit flights and detailed 4 to 6 hour local flights. Several general features were observed from preliminary Survey data analyses. Validation and intercomparison results have shown good agreement, usually better than a factor of two. Atmospheric aerosols frequently exhibited a three layer vertical structure, with (1) high and fairly uniform backscatter in the shallow cloud capped marine boundary layer; (2) moderate and highly variable backscatter in a deeper overlaying cloud pumped layer; and (3) low, regionally uniform, but seasonally and latitudinally variable backscatter in the middle and upper troposphere. The survey missions represent two isolated snapshots of a small portion of the global aerosol system. Consequently, Survey results can best be understood by synthesizing them with the more comprehensive GLOBE data base, which is being compiled at NASA-Marshall
Ariel - Volume 2 Number 7
Editors
Richard J. Bonanno
Robin A. Edwards
Associate Editors
Steven Ager
Stephen Flynn
Shep Dickman
Tom Williams
Lay-out Editor
Eugenia Miller
Contributing Editors
Michael J. Blecker
W. Cherry Light
James J. Nocon
Lynne Porter
Editors Emeritus
Delvyn C. Case, Jr.
Paul M. Fernhof
Demonstration of an online tool to assist managed care formulary evidence-based decision making: meta-analysis of topical prostaglandin analog efficacy
BACKGROUND: The purpose of this paper was to demonstrate the use of an online service for conducting a systematic review and meta-analysis of the efficacy of topical prostaglandin analogs in reducing intraocular pressure (IOP) in glaucoma and ocular hypertension. METHODS: An online service provider (Doctor Evidence) reviewed and extracted data from the peer-reviewed literature through September 2009. Randomized controlled studies of at least three months’ duration assessing at least two prostaglandin analogs in patients with primary open-angle glaucoma, ocular hypertension, or normal-tension glaucoma were included. The primary endpoint was mean IOP. Summary estimates were created using random-effects models. The Q Chi-square test was used to assess statistical heterogeneity. RESULTS: Sixteen studies satisfied the inclusion criteria and were analyzed. On average, greater IOP-lowering was seen with bimatoprost relative to latanoprost (1 mmHg, P = 0.025) and travoprost (0.8 mmHg, P = 0.033) based on mean IOP after 12–26 weeks of treatment. No statistical difference was observed in IOP-lowering between latanoprost and travoprost (P = 0.841). Findings were similar to previously published meta-analyses of topical prostaglandin analogs. CONCLUSION: Systematic reviews relying on meta-analytic techniques to create summary statistics are considered to be the “gold standard” for synthesizing evidence to support clinical decision-making. However, the process is time-consuming, labor-intensive, and outside the capability of most formulary managers. We have demonstrated the effectiveness of a commercial service that facilitates the process of conducting such reviews
Unsteady Aerodynamic Forces on Small-Scale Wings: Experiments, Simulations, and Models
The goal of this work is to develop low order dynamical systems models for the unsteady lift and drag forces on small wings in various modes of flight, and to better understand the physical characteristics of unsteady laminar separation. Velocity field and body force data for a flat plate at static angle of attack and in sinusoidal pitch and plunge maneuvers are generated by 2D direct numerical simulations using an immersed boundary method at Re = 100. The lift of a sinusoidally plunging plate is found to deviate from the quasi-steady approximation at a reduced frequency of k = 0.5 over a range of Strouhal numbers. Lagrangian coherent structures illustrate formation and convection of a leading-edge vortex in sinusoidal pitch and plunge. A phenomenological ODE model with three states is shown to reproduce the lift on a flat plate at a static angle of attack above the stall angle. DNS for a 3D pitch-up maneuver of a rectangular plate at Re = 300 shows the effect of aspect ratio on vortical wake structure and lift. Wind tunnel experiments of a wing in single pitch-up and sinusoidal pitch maneuvers are compared with a dynamic model incorporating time delays and relaxation times to produce hysteresis
South African Stress and Health (SASH) study : 12-month and lifetime prevalence of common mental disorders
The original publication is available at http://www.samj.org.zaBackground. The South African Stress and Health (SASH) study is the first large-scale population-based study of common mental disorders in the country. This paper provides data on the 12-month and lifetime prevalence of these conditions. Methods. Data from a nationally representative sample of 4 351 adults were analysed. Mental disorders were assessed with the Composite International Diagnostic Interview (CIDI). An extensive survey questionnaire detailed contextual and socio-demographic factors, onset and course of mental disorders, and risk factors. Simple weighted cross-tabulation methods were used to estimate prevalence, and logistic regression analysis was used to study correlates of 12-month and lifetime prevalence. Results. The lifetime prevalence for any disorder was 30.3%, and the most prevalent 12-month and lifetime disorders were the anxiety disorders. The Western Cape had the highest 12-month and lifetime prevalence rates, and the lowest rates were in the Northern Cape. Conclusions. The SASH study shows relatively high 12-month and lifetime prevalence rates. These findings have significant implications for planning mental health services.Publishers' versio
- …
