934 research outputs found
Recommended from our members
Proteomic Profiling of γ-Secretase Substrates and Mapping of Substrate Requirements
The presenilin/γ-secretase complex, an unusual intramembrane aspartyl protease, plays an essential role in cellular signaling and membrane protein turnover. Its ability to liberate numerous intracellular signaling proteins from the membrane and also mediate the secretion of amyloid-β protein (Aβ) has made modulation of γ-secretase activity a therapeutic goal for cancer and Alzheimer disease. Although the proteolysis of the prototypical substrates Notch and β-amyloid precursor protein (APP) has been intensely studied, the full spectrum of substrates and the determinants that make a transmembrane protein a substrate remain unclear. Using an unbiased approach to substrate identification, we surveyed the proteome of a human cell line for targets of γ-secretase and found a relatively small population of new substrates, all of which are type I transmembrane proteins but have diverse biological roles. By comparing these substrates to type I proteins not regulated by γ-secretase, we determined that besides a short ectodomain, γ-secretase requires permissive transmembrane and cytoplasmic domains to bind and cleave its substrates. In addition, we provide evidence for at least two mechanisms that can target a substrate for γ cleavage: one in which a substrate with a short ectodomain is directly cleaved independent of sheddase association, and a second where a substrate requires ectodomain shedding to instruct subsequent γ-secretase processing. These findings expand our understanding of the mechanisms of substrate selection as well as the diverse cellular processes to which γ-secretase contributes
Recommended from our members
Trim32 reduces PI3K–Akt–FoxO signaling in muscle atrophy by promoting plakoglobin–PI3K dissociation
Activation of the PI3K–Akt–FoxO pathway induces cell growth, whereas its inhibition reduces cell survival and, in muscle, causes atrophy. Here, we report a novel mechanism that suppresses PI3K–Akt–FoxO signaling. Although skeletal muscle lacks desmosomes, it contains multiple desmosomal components, including plakoglobin. In normal muscle plakoglobin binds the insulin receptor and PI3K subunit p85 and promotes PI3K–Akt–FoxO signaling. During atrophy, however, its interaction with PI3K–p85 is reduced by the ubiquitin ligase Trim32 (tripartite motif containing protein 32). Inhibition of Trim32 enhanced plakoglobin binding to PI3K–p85 and promoted PI3K–Akt–FoxO signaling. Surprisingly, plakoglobin overexpression alone enhanced PI3K–Akt–FoxO signaling. Furthermore, Trim32 inhibition in normal muscle increased PI3K–Akt–FoxO signaling, enhanced glucose uptake, and induced fiber growth, whereas plakoglobin down-regulation reduced PI3K–Akt–FoxO signaling, decreased glucose uptake, and caused atrophy. Thus, by promoting plakoglobin–PI3K dissociation, Trim32 reduces PI3K–Akt–FoxO signaling in normal and atrophying muscle. This mechanism probably contributes to insulin resistance during fasting and catabolic diseases and perhaps to the myopathies and cardiomyopathies seen with Trim32 and plakoglobin mutations
Recommended from our members
Ubiquitylation by Trim32 causes coupled loss of desmin, Z-bands, and thin filaments in muscle atrophy
During muscle atrophy, myofibrillar proteins are degraded in an ordered process in which MuRF1 catalyzes ubiquitylation of thick filament components (Cohen et al. 2009. J. Cell Biol. http://dx.doi.org/10.1083/jcb.200901052). Here, we show that another ubiquitin ligase, Trim32, ubiquitylates thin filament (actin, tropomyosin, troponins) and Z-band (α-actinin) components and promotes their degradation. Down-regulation of Trim32 during fasting reduced fiber atrophy and the rapid loss of thin filaments. Desmin filaments were proposed to maintain the integrity of thin filaments. Accordingly, we find that the rapid destruction of thin filament proteins upon fasting was accompanied by increased phosphorylation of desmin filaments, which promoted desmin ubiquitylation by Trim32 and degradation. Reducing Trim32 levels prevented the loss of both desmin and thin filament proteins. Furthermore, overexpression of an inhibitor of desmin polymerization induced disassembly of desmin filaments and destruction of thin filament components. Thus, during fasting, desmin phosphorylation increases and enhances Trim32-mediated degradation of the desmin cytoskeleton, which appears to facilitate the breakdown of Z-bands and thin filaments
The CASTOR Proteins Are Arginine Sensors for the mTORC1 Pathway
Amino acids signal to the mTOR complex I (mTORC1) growth pathway through the Rag GTPases. Multiple distinct complexes regulate the Rags, including GATOR1, a GTPase activating protein (GAP), and GATOR2, a positive regulator of unknown molecular function. Arginine stimulation of cells activates mTORC1, but how it is sensed is not well understood. Recently, SLC38A9 was identified as a putative lysosomal arginine sensor required for arginine to activate mTORC1 but how arginine deprivation represses mTORC1 is unknown. Here, we show that CASTOR1, a previously uncharacterized protein, interacts with GATOR2 and is required for arginine deprivation to inhibit mTORC1. CASTOR1 homodimerizes and can also heterodimerize with the related protein, CASTOR2. Arginine disrupts the CASTOR1-GATOR2 complex by binding to CASTOR1 with a dissociation constant of ∼30 μM, and its arginine-binding capacity is required for arginine to activate mTORC1 in cells. Collectively, these results establish CASTOR1 as an arginine sensor for the mTORC1 pathway.United States. National Institutes of Health (R01CA103866)United States. National Institutes of Health (AI47389)United States. Department of Energy (W81XWH-07-0448)United States. National Institutes of Health (F31 CA180271)United States. National Institutes of Health (F31 CA189437
Recommended from our members
Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy
Autophagy, the process by which proteins and organelles are sequestered in double-membrane structures called autophagosomes and delivered to lysosomes for degradation, is critical in diseases such as cancer and neurodegeneration1,2. Much of our understanding of this process has emerged from analysis of bulk cytoplasmic autophagy, but our understanding of how specific cargo including organelles, proteins, or intracellular pathogens are targeted for selective autophagy is limited3. We employed quantitative proteomics to identify a cohort of novel and known autophagosome-enriched proteins, including cargo receptors. Like known cargo receptors, NCOA4 was highly enriched in autophagosomes, and associated with ATG8 proteins that recruit cargo-receptor complexes into autophagosomes. Unbiased identification of NCOA4-associated proteins revealed ferritin heavy and light chains, components of an iron-filled cage structure that protects cells from reactive iron species4 but is degraded via autophagy to release iron5,6 through an unknown mechanism. We found that delivery of ferritin to lysosomes required NCOA4, and an inability of NCOA4-deficient cells to degrade ferritin leads to decreased bioavailable intracellular iron. This work identifies NCOA4 as a selective cargo receptor for autophagic turnover of ferritin (ferritinophagy) critical for iron homeostasis and provides a resource for further dissection of autophagosomal cargo-receptor connectivity
Recommended from our members
Quantitative proteomic analysis reveals posttranslational responses to aneuploidy in yeast
Aneuploidy causes severe developmental defects and is a near universal feature of tumor cells. Despite its profound effects, the cellular processes affected by aneuploidy are not well characterized. Here, we examined the consequences of aneuploidy on the proteome of aneuploid budding yeast strains. We show that although protein levels largely scale with gene copy number, subunits of multi-protein complexes are notable exceptions. Posttranslational mechanisms attenuate their expression when their encoding genes are in excess. Our proteomic analyses further revealed a novel aneuploidy-associated protein expression signature characteristic of altered metabolism and redox homeostasis. Indeed aneuploid cells harbor increased levels of reactive oxygen species (ROS). Interestingly, increased protein turnover attenuates ROS levels and this novel aneuploidy-associated signature and improves the fitness of most aneuploid strains. Our results show that aneuploidy causes alterations in metabolism and redox homeostasis. Cells respond to these alterations through both transcriptional and posttranscriptional mechanisms. DOI: http://dx.doi.org/10.7554/eLife.03023.00
Recommended from our members
A Conserved CCCH-type Zinc Finger Protein Regulates mRNA Nuclear Adenylation and Export
Coupling of messenger RNA (mRNA) nuclear export with prior processing steps aids in the fidelity and efficiency of mRNA transport to the cytoplasm. In this study, we show that the processes of export and polyadenylation are coupled via the Drosophila melanogaster CCCH-type zinc finger protein CG6694/dZC3H3 through both physical and functional interactions. We show that depletion of dZC3H3 from S2R+ cells results in transcript hyperadenylation. Using targeted coimmunoprecipitation and liquid chromatography mass spectrometry (MS)/MS techniques, we characterize interactions of known components of the mRNA nuclear export and polyadenylation machineries with dZC3H3. Furthermore, we demonstrate the functional conservation of this factor, as depletion of its human homologue ZC3H3 by small interfering RNA results in an mRNA export defect in human cells as well. Nuclear polyadenylated (poly(A)) RNA in ZC3H3-depleted cells is sequestered in foci removed from SC35-containing speckles, indicating a shift from the normal subnuclear distribution of poly(A) RNA. Our data suggest a model wherein ZC3H3 interfaces between the polyadenylation machinery, newly poly(A) mRNAs, and factors for transcript export
Regulation of Selenocysteine Content of Human Selenoprotein P by Dietary Selenium and Insertion of Cysteine in Place of Selenocysteine
Selenoproteins are a unique group of proteins that contain selenium in the
form of selenocysteine (Sec) co-translationally inserted in response to a UGA
codon with the help of cis- and trans-acting factors. Mammalian selenoproteins
contain single Sec residues, with the exception of selenoprotein P (SelP) that
has 7–15 Sec residues depending on species. Assessing an individual’s selenium
status is important under various pathological conditions, which requires a
reliable selenium biomarker. Due to a key role in organismal selenium
homeostasis, high Sec content, regulation by dietary selenium, and
availability of robust assays in human plasma, SelP has emerged as a major
biomarker of selenium status. Here, we found that Cys is present in various
Sec positions in human SelP. Treatment of cells expressing SelP with
thiophosphate, an analog of the selenium donor for Sec synthesis, led to a
nearly complete replacement of Sec with Cys, whereas supplementation of cells
with selenium supported Sec insertion. SelP isolated directly from human
plasma had up to 8% Cys inserted in place of Sec, depending on the Sec
position. These findings suggest that a change in selenium status may be
reflected in both SelP concentration and its Sec content, and that
availability of the SelP-derived selenium for selenoprotein synthesis may be
overestimated under conditions of low selenium status due to replacement of
Sec with Cys
Mitotic regulators TPX2 and Aurora A protect DNA forks during replication stress by counteracting 53BP1 function
Recommended from our members
PP2ARts1 is a master regulator of pathways that control cell size
Cell size checkpoints ensure that passage through G1 and mitosis occurs only when sufficient growth has occurred. The mechanisms by which these checkpoints work are largely unknown. PP2A associated with the Rts1 regulatory subunit (PP2ARts1) is required for cell size control in budding yeast, but the relevant targets are unknown. In this paper, we used quantitative proteome-wide mass spectrometry to identify proteins controlled by PP2ARts1. This revealed that PP2ARts1 controls the two key checkpoint pathways thought to regulate the cell cycle in response to cell growth. To investigate the role of PP2ARts1 in these pathways, we focused on the Ace2 transcription factor, which is thought to delay cell cycle entry by repressing transcription of the G1 cyclin CLN3. Diverse experiments suggest that PP2ARts1 promotes cell cycle entry by inhibiting the repressor functions of Ace2. We hypothesize that control of Ace2 by PP2ARts1 plays a role in mechanisms that link G1 cyclin accumulation to cell growth
- …
